题目:有N个正实数(注意是实数,大小升序排列) x1 , x2 ... xN,另有一个实数M。 需要选出若干个x,使这几个x的和与 M 最接近。 请描述实现算法,并指出算法复杂度。
代码如下:
#include<iostream> using namespace std; int min_diff(int data[],int n,int &min_i,int &min_j,int number); int main() { int number,n,i; cin>>number>>n; int *data=new int[n]; for(i=0;i<n;i++) cin>>data[i]; int min_i,min_j; int min_d=min_diff(data,n,min_i,min_j,number); int sum=0; for(i=min_i;i<min_j;i++) { sum=sum+data[i]; cout<<data[i]<<" + "; } sum=sum+data[i]; cout<<data[i]<<" = "<<sum<<endl; cout<<"The min difference with "<<number<<" is "<<min_d<<endl; delete []data; return 0; } int min_diff(int data[],int n,int &min_i,int &min_j,int number) { if(data==NULL||n<=0) return 0; int i=0,j=0; min_i=i; min_j=j; int min_d=0x7fffffff; int sum=data[0]; while(i<=j&&j<n) { if(sum==number) { min_i=i; min_j=j; min_d=0; break; } else if(sum>number) { if(sum-number<min_d) { min_d=sum-number; min_i=i; min_j=j; } sum=sum-data[i]; i++; } else { if(number-sum<min_d) { min_d=number-sum; min_i=i; min_j=j; } j++; sum=sum+data[j]; } } return min_d; }
时间复杂度度为O(n),空间复杂度为O(1).