zoukankan      html  css  js  c++  java
  • keras recall

    # accuracy, fmeasure, precision,recall
    def mcor(y_true, y_pred):
        y_pred_pos = K.round(K.clip(y_pred, 0, 1))
        y_pred_neg = 1-y_pred_pos
    
        y_pos = K.round(K.clip(y_true, 0, 1))
        y_neg = 1-y_pos
    
        tp = K.sum(y_pos*y_pred_pos)
        tn = K.sum(y_neg*y_pred_neg)
    
        fp = K.sum(y_neg*y_pred_pos)
        fn = K.sum(y_pos*y_pred_neg)
    
        numerator = (tp*tn - fp*fn)
        denominator = K.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))
    
        return numerator/(denominator+K.epsilon())
    
    def precision(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true*y_pred, 0, 1)))
        predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
        precision = true_positives / (predicted_positives + K.epsilon())
        return precision
    
    
    def recall(y_true, y_pred):
        true_positives = K.sum(K.round(K.clip(y_true*y_pred, 0, 1)))
        possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
        recall = true_positives/(possible_positives+K.epsilon())
        return recall
    
    def f1(y_true, y_pred):
        def recall(y_true, y_pred):
            true_positives = K.sum(K.round(K.clip(y_true*y_pred, 0, 1)))
            possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
            recall = true_positives/(possible_positives+K.epsilon())
            return recall
    
        def precision(y_true, y_pred):
            true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
            predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
            precision = true_positives / (predicted_positives + K.epsilon())
            return precision
    
        precision = precision(y_true, y_pred)
        recall = recall(y_true, y_pred)
        return 2*((precision*recall)/(precision+recall+K.epsilon()))
  • 相关阅读:
    java private修饰的类和变量
    Volatile和Synchronized对可见性和原子性的支持
    Socket套接字
    Spring MVC请求执行流程
    Spring AOP术语解释
    equals()和==的区别
    约瑟夫环之递归算法
    数据库特性之原子性和一致性
    设计模式之单例模式
    平衡二叉树的插入旋转
  • 原文地址:https://www.cnblogs.com/papio/p/10869652.html
Copyright © 2011-2022 走看看