zoukankan      html  css  js  c++  java
  • codility:Maximum slice problem (MaxDoubleSliceSum, MaxProfit, MaxSliceSum)

    唯一一个全部一次100%的lesson。(实在因为太简单。。。)

    MaxSliceSum:

    A non-empty zero-indexed array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P ≤ Q < N, is called a slice of array A. The sum of a slice (P, Q) is the total of A[P] + A[P+1] + ... + A[Q].

    Write a function:

    int solution(const vector<int> &A);

    that, given an array A consisting of N integers, returns the maximum sum of any slice of A.

    For example, given array A such that:

    A[0] = 3  A[1] = 2  A[2] = -6
    A[3] = 4  A[4] = 0

    the function should return 5 because:

    • (3, 4) is a slice of A that has sum 4,
    • (2, 2) is a slice of A that has sum −6,
    • (0, 1) is a slice of A that has sum 5,
    • no other slice of A has sum greater than (0, 1).

    Assume that:

    • N is an integer within the range [1..1,000,000];
    • each element of array A is an integer within the range [−1,000,000..1,000,000];
    • the result will be an integer within the range [−2,147,483,648..2,147,483,647].

    Complexity:

    • expected worst-case time complexity is O(N);
    • expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).

    就是最大连续子串和么,只要遍历的时候记录以当前位置结尾的子串的最大和就好。

    // you can also use includes, for example:
    #include <algorithm>
    int solution(const vector<int> &A) {
        // write your code in C++98
        int size = A.size();
        int res = A[0];
        int last = res;
        for(int i=1;i<size;i++) {
            last = max(A[i],A[i]+last);
            if(last>res)
                res = last;
        }
        return res;
    }

    MaxProfit:

    A zero-indexed array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where 0 ≤ P ≤ Q < N, then the profit of such transaction is equal to A[Q] − A[P], provided that A[Q] ≥ A[P]. Otherwise, the transaction brings loss of A[P] − A[Q].

    For example, consider the following array A consisting of six elements such that:

      A[0] = 23171  
      A[1] = 21011  
      A[2] = 21123
      A[3] = 21366  
      A[4] = 21013  
      A[5] = 21367

    If a share was bought on day 0 and sold on day 2, a loss of 2048 would occur because A[2] − A[0] = 21123 − 23171 = −2048. If a share was bought on day 4 and sold on day 5, a profit of 354 would occur because A[5] − A[4] = 21367 − 21013 = 354. Maximum possible profit was 356. It would occur if a share was bought on day 1 and sold on day 5.

    Write a function,

    int solution(const vector<int> &A);

    that, given a zero-indexed array A consisting of N integers containing daily prices of a stock share for a period of N consecutive days, returns the maximum possible profit from one transaction during this period. The function should return 0 if it was impossible to gain any profit.

    For example, given array A consisting of six elements such that:

      A[0] = 23171  
      A[1] = 21011  
      A[2] = 21123
      A[3] = 21366  
      A[4] = 21013  
      A[5] = 21367

    the function should return 356, as explained above.

    Assume that:

    • N is an integer within the range [0..400,000];
    • each element of array A is an integer within the range [0..200,000].

    Complexity:

    • expected worst-case time complexity is O(N);
    • expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).

    给了一串交易记录,问最大获利。思想和上面的最大连续子串和类似。只是这次在遍历的时候要记录的是当前时间卖出的最大利润。所以还需要多维护一个到当前时间为止的最低股价。

    // you can also use includes, for example:
    // #include <algorithm>
    int solution(const vector<int> &A) {
        // write your code in C++98
        int size = A.size();
        if(size<=1) {
            return 0;
        }
        int lowestPrice = A[0];
        int maxProfit = 0;
        for(int i=1;i<size;i++) {
            if(A[i]<=lowestPrice) {
                lowestPrice = A[i];
            }else {
                if(A[i]-lowestPrice>maxProfit) {
                    maxProfit = A[i]-lowestPrice;
                }
            }
        }
        return maxProfit;
    }

    MaxDoubleSliceSum:

    A non-empty zero-indexed array A consisting of N integers is given.

    A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.

    The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].

    For example, array A such that:

        A[0] = 3
        A[1] = 2
        A[2] = 6
        A[3] = -1
        A[4] = 4
        A[5] = 5
        A[6] = -1
        A[7] = 2

    contains the following example double slices:

    • double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
    • double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
    • double slice (3, 4, 5), sum is 0.

    The goal is to find the maximal sum of any double slice.

    Write a function:

    int solution(vector<int> &A);

    that, given a non-empty zero-indexed array A consisting of N integers, returns the maximal sum of any double slice.

    For example, given:

        A[0] = 3
        A[1] = 2
        A[2] = 6
        A[3] = -1
        A[4] = 4
        A[5] = 5
        A[6] = -1
        A[7] = 2

    the function should return 17, because no double slice of array A has a sum of greater than 17.

    Assume that:

    • N is an integer within the range [3..100,000];
    • each element of array A is an integer within the range [−10,000..10,000].

    Complexity:

    • expected worst-case time complexity is O(N);
    • expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

    这里是让double slice的sum最大。The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1]。其实还是最大子串和的变种,只是需要从左往右遍历一次,记住从左到右这个方向上到每个位置的最大子串和。然后从右往左遍历一次,记录从右往左这个方向上到每个位置的最大子串和。然后相加再做下处理找出最大值就好。需要注意的是头和尾是不能参与计算的。因为他们无论如何不可能为double slice的sum做贡献。

    // you can also use includes, for example:
    // #include <algorithm>
    #include <vector>
    #include <algorithm>
    int solution(vector<int> &A) {
        // write your code in C++98
        if(A.size()==3) {
            return 0;
        }
        int len = A.size();
        A[0]=0;
        A[len-1]=0;
        vector<int> leftVec(A);
        vector<int> rightVec(A);
        
        for(int i=1;i<len-1;i++) {
            leftVec[i] = max(leftVec[i],leftVec[i]+leftVec[i-1]);
            rightVec[len-1-i] = max(rightVec[len-1-i],rightVec[len-1-i]+rightVec[len-i]);
        }
        int res = A[1];
        for(int i=1;i<len-1;i++) {
            int tmp = leftVec[i]+rightVec[i]-A[i]*2;
            if(tmp>res) {
                res = tmp;
            }
        }
        return res;
    }
  • 相关阅读:
    【BZOJ】【3004】吊灯
    【BZOJ】【3653】谈笑风生
    【BZOJ】【2500】幸福的道路
    【BZOJ】【3612】【HEOI 2014】平衡
    【BZOJ】【1485】【HNOI2009】有趣的数列
    【BZOJ】【1293】【SCOI2009】生日礼物
    【BZOJ】【1055】【HAOI2008】玩具取名
    【BZOJ】【1053】【HAOI2007】反素数ant
    【BZOJ】【1052】【HAOI2007】覆盖问题
    【BZOJ】【1050】【HAOI2006】旅行comf
  • 原文地址:https://www.cnblogs.com/parapax/p/3644922.html
Copyright © 2011-2022 走看看