唯一一个全部一次100%的lesson。(实在因为太简单。。。)
MaxSliceSum:
A non-empty zero-indexed array A consisting of N integers is given. A pair of integers (P, Q), such that 0 ≤ P ≤ Q < N, is called a slice of array A. The sum of a slice (P, Q) is the total of A[P] + A[P+1] + ... + A[Q].
Write a function:
int solution(const vector<int> &A);
that, given an array A consisting of N integers, returns the maximum sum of any slice of A.
For example, given array A such that:
A[0] = 3 A[1] = 2 A[2] = -6 A[3] = 4 A[4] = 0
the function should return 5 because:
- (3, 4) is a slice of A that has sum 4,
- (2, 2) is a slice of A that has sum −6,
- (0, 1) is a slice of A that has sum 5,
- no other slice of A has sum greater than (0, 1).
Assume that:
- N is an integer within the range [1..1,000,000];
- each element of array A is an integer within the range [−1,000,000..1,000,000];
- the result will be an integer within the range [−2,147,483,648..2,147,483,647].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
就是最大连续子串和么,只要遍历的时候记录以当前位置结尾的子串的最大和就好。
// you can also use includes, for example: #include <algorithm> int solution(const vector<int> &A) { // write your code in C++98 int size = A.size(); int res = A[0]; int last = res; for(int i=1;i<size;i++) { last = max(A[i],A[i]+last); if(last>res) res = last; } return res; }
MaxProfit:
A zero-indexed array A consisting of N integers is given. It contains daily prices of a stock share for a period of N consecutive days. If a single share was bought on day P and sold on day Q, where 0 ≤ P ≤ Q < N, then the profit of such transaction is equal to A[Q] − A[P], provided that A[Q] ≥ A[P]. Otherwise, the transaction brings loss of A[P] − A[Q].
For example, consider the following array A consisting of six elements such that:
A[0] = 23171 A[1] = 21011 A[2] = 21123 A[3] = 21366 A[4] = 21013 A[5] = 21367
If a share was bought on day 0 and sold on day 2, a loss of 2048 would occur because A[2] − A[0] = 21123 − 23171 = −2048. If a share was bought on day 4 and sold on day 5, a profit of 354 would occur because A[5] − A[4] = 21367 − 21013 = 354. Maximum possible profit was 356. It would occur if a share was bought on day 1 and sold on day 5.
Write a function,
int solution(const vector<int> &A);
that, given a zero-indexed array A consisting of N integers containing daily prices of a stock share for a period of N consecutive days, returns the maximum possible profit from one transaction during this period. The function should return 0 if it was impossible to gain any profit.
For example, given array A consisting of six elements such that:
A[0] = 23171 A[1] = 21011 A[2] = 21123 A[3] = 21366 A[4] = 21013 A[5] = 21367
the function should return 356, as explained above.
Assume that:
- N is an integer within the range [0..400,000];
- each element of array A is an integer within the range [0..200,000].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(1), beyond input storage (not counting the storage required for input arguments).
给了一串交易记录,问最大获利。思想和上面的最大连续子串和类似。只是这次在遍历的时候要记录的是当前时间卖出的最大利润。所以还需要多维护一个到当前时间为止的最低股价。
// you can also use includes, for example: // #include <algorithm> int solution(const vector<int> &A) { // write your code in C++98 int size = A.size(); if(size<=1) { return 0; } int lowestPrice = A[0]; int maxProfit = 0; for(int i=1;i<size;i++) { if(A[i]<=lowestPrice) { lowestPrice = A[i]; }else { if(A[i]-lowestPrice>maxProfit) { maxProfit = A[i]-lowestPrice; } } } return maxProfit; }
MaxDoubleSliceSum:
A non-empty zero-indexed array A consisting of N integers is given.
A triplet (X, Y, Z), such that 0 ≤ X < Y < Z < N, is called a double slice.
The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1].
For example, array A such that:
A[0] = 3 A[1] = 2 A[2] = 6 A[3] = -1 A[4] = 4 A[5] = 5 A[6] = -1 A[7] = 2
contains the following example double slices:
- double slice (0, 3, 6), sum is 2 + 6 + 4 + 5 = 17,
- double slice (0, 3, 7), sum is 2 + 6 + 4 + 5 − 1 = 16,
- double slice (3, 4, 5), sum is 0.
The goal is to find the maximal sum of any double slice.
Write a function:
int solution(vector<int> &A);
that, given a non-empty zero-indexed array A consisting of N integers, returns the maximal sum of any double slice.
For example, given:
A[0] = 3 A[1] = 2 A[2] = 6 A[3] = -1 A[4] = 4 A[5] = 5 A[6] = -1 A[7] = 2
the function should return 17, because no double slice of array A has a sum of greater than 17.
Assume that:
- N is an integer within the range [3..100,000];
- each element of array A is an integer within the range [−10,000..10,000].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
这里是让double slice的sum最大。The sum of double slice (X, Y, Z) is the total of A[X + 1] + A[X + 2] + ... + A[Y − 1] + A[Y + 1] + A[Y + 2] + ... + A[Z − 1]。其实还是最大子串和的变种,只是需要从左往右遍历一次,记住从左到右这个方向上到每个位置的最大子串和。然后从右往左遍历一次,记录从右往左这个方向上到每个位置的最大子串和。然后相加再做下处理找出最大值就好。需要注意的是头和尾是不能参与计算的。因为他们无论如何不可能为double slice的sum做贡献。
// you can also use includes, for example: // #include <algorithm> #include <vector> #include <algorithm> int solution(vector<int> &A) { // write your code in C++98 if(A.size()==3) { return 0; } int len = A.size(); A[0]=0; A[len-1]=0; vector<int> leftVec(A); vector<int> rightVec(A); for(int i=1;i<len-1;i++) { leftVec[i] = max(leftVec[i],leftVec[i]+leftVec[i-1]); rightVec[len-1-i] = max(rightVec[len-1-i],rightVec[len-1-i]+rightVec[len-i]); } int res = A[1]; for(int i=1;i<len-1;i++) { int tmp = leftVec[i]+rightVec[i]-A[i]*2; if(tmp>res) { res = tmp; } } return res; }