以下我们描述如何使用 Elastic 技术栈来为 Kubernetes 构建监控环境。可观测性的目标是为生产环境提供运维工具来检测服务不可用的情况(比如服务宕机、错误或者响应变慢等),并且保留一些可以排查的信息,以帮助我们定位问题。总的来说主要包括3个方面:
- 监控指标提供系统各个组件的时间序列数据,比如 CPU、内存、磁盘、网络等信息,通常可以用来显示系统的整体状况以及检测某个时间的异常行为
- 日志为运维人员提供了一个数据来分析系统的一些错误行为,通常将系统、服务和应用的日志集中收集在同一个数据库中
- 追踪或者 APM(应用性能监控)提供了一个更加详细的应用视图,可以将服务执行的每一个请求和步骤都记录下来(比如 HTTP 调用、数据库查询等),通过追踪这些数据,我们可以检测到服务的性能,并相应地改进或修复我们的系统。
本文我们就将在 Kubernetes 集群中使用由 ElasticSearch、Kibana、Filebeat、Metricbeat 和 APM-Server 组成的 Elastic 技术栈来监控系统环境。为了更好地去了解这些组件的配置,我们这里将采用手写资源清单文件的方式来安装这些组件,当然我们也可以使用 Helm 等其他工具来快速安装配置。
接下来我们就来学习下如何使用 Elastic 技术构建 Kubernetes 监控栈。我们这里的试验环境是 Kubernetes v1.16.3 版本的集群(已经配置完成),为方便管理,我们将所有的资源对象都部署在一个名为 elastic 的命名空间中:
$ kubectl create ns elastic
namespace/elastic created
1. SpringBoot 和 MongoDB 开发的示例应用
这里我们先部署一个使用 SpringBoot 和 MongoDB 开发的示例应用。首先部署一个 MongoDB 应用,对应的资源清单文件如下所示:
# mongo.yml
---
apiVersion: v1
kind: Service
metadata:
name: mongo
namespace: elastic
labels:
app: mongo
spec:
ports:
- port: 27017
protocol: TCP
selector:
app: mongo
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
namespace: elastic
name: mongo
labels:
app: mongo
spec:
serviceName: "mongo"
selector:
matchLabels:
app: mongo
template:
metadata:
labels:
app: mongo
spec:
containers:
- name: mongo
image: mongo
ports:
- containerPort: 27017
volumeMounts:
- name: data
mountPath: /data/db
volumeClaimTemplates:
- metadata:
name: data
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: rook-ceph-block # 使用支持 RWO 的 StorageClass
resources:
requests:
storage: 1Gi
这里我们使用了一个名为 rook-ceph-block 的 StorageClass 对象来自动创建 PV,可以替换成自己集群中支持 RWO 的 StorageClass 对象即可。存储采用rook-ceph 实践配置,直接使用上面的资源清单创建即可:
$ kubectl apply -f mongo.yml
service/mongo created
statefulset.apps/mongo created
$ kubectl get pods -n elastic -l app=mongo
NAME READY STATUS RESTARTS AGE
mongo-0 1/1 Running 0 34m
直到 Pod 变成 Running 状态证明 mongodb 部署成功了。接下来部署 SpringBoot 的 API 应用,这里我们通过 NodePort 类型的 Service 服务来暴露该服务,对应的资源清单文件如下所示:
# spring-boot-simple.yml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: spring-boot-simple
labels:
app: spring-boot-simple
spec:
type: NodePort
ports:
- port: 8080
protocol: TCP
selector:
app: spring-boot-simple
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: spring-boot-simple
labels:
app: spring-boot-simple
spec:
replicas: 1
selector:
matchLabels:
app: spring-boot-simple
template:
metadata:
labels:
app: spring-boot-simple
spec:
containers:
- image: cnych/spring-boot-simple:0.0.1-SNAPSHOT
name: spring-boot-simple
env:
- name: SPRING_DATA_MONGODB_HOST # 指定MONGODB地址
value: mongo
ports:
- containerPort: 8080
同样直接创建上面的应用的应用即可:
$ kubectl apply -f spring-boot-simple.yaml
service/spring-boot-simple created
deployment.apps/spring-boot-simple created
$ kubectl get pods -n elastic -l app=spring-boot-simple
NAME READY STATUS RESTARTS AGE
spring-boot-simple-64795494bf-hqpcj 1/1 Running 0 24m
$ kubectl get svc -n elastic -l app=spring-boot-simple
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
spring-boot-simple NodePort 10.109.55.134 <none> 8080:31847/TCP 84s
当应用部署完成后,我们就可以通过地址 http://:31847 访问应用,可以通过如下命令进行简单测试:
$ curl -X GET http://k8s.qikqiak.com:31847/
Greetings from Spring Boot!
发送一个 POST 请求:
$ curl -X POST http://k8s.qikqiak.com:31847/message -d 'hello world'
{"id":"5ef55c130d53190001bf74d2","message":"hello+world=","postedAt":"2020-06-26T02:23:15.860+0000"}
获取所以消息数据:
$ curl -X GET http://k8s.qikqiak.com:31847/message
[{"id":"5ef55c130d53190001bf74d2","message":"hello+world=","postedAt":"2020-06-26T02:23:15.860+0000"}]
2. ElasticSearch 集群
要建立一个 Elastic 技术的监控栈,当然首先我们需要部署 ElasticSearch,它是用来存储所有的指标、日志和追踪的数据库,这里我们通过3个不同角色的可扩展的节点组成一个集群。
2.1 安装 ElasticSearch 主节点
设置集群的第一个节点为 Master 主节点,来负责控制整个集群。首先创建一个 ConfigMap 对象,用来描述集群的一些配置信息,以方便将 ElasticSearch 的主节点配置到集群中并开启安全认证功能。对应的资源清单文件如下所示:
# elasticsearch-master.configmap.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-master-config
labels:
app: elasticsearch
role: master
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: true
data: false
ingest: false
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
然后创建一个 Service 对象,在 Master 节点下,我们只需要通过用于集群通信的 9300 端口进行通信。资源清单文件如下所示:
# elasticsearch-master.service.yaml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-master
labels:
app: elasticsearch
role: master
spec:
ports:
- port: 9300
name: transport
selector:
app: elasticsearch
role: master
---
最后使用一个 Deployment 对象来定义 Master 节点应用,资源清单文件如下所示:
# elasticsearch-master.deployment.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: elasticsearch-master
labels:
app: elasticsearch
role: master
spec:
replicas: 1
selector:
matchLabels:
app: elasticsearch
role: master
template:
metadata:
labels:
app: elasticsearch
role: master
spec:
containers:
- name: elasticsearch-master
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-master
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms512m -Xmx512m"
ports:
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: storage
mountPath: /data
volumes:
- name: config
configMap:
name: elasticsearch-master-config
- name: "storage"
emptyDir:
medium: ""
---
直接创建上面的3个资源对象即可:
$ kubectl apply -f elasticsearch-master.configmap.yaml
-f elasticsearch-master.service.yaml
-f elasticsearch-master.deployment.yaml
configmap/elasticsearch-master-config created
service/elasticsearch-master created
deployment.apps/elasticsearch-master created
$ kubectl get pods -n elastic -l app=elasticsearch
NAME READY STATUS RESTARTS AGE
elasticsearch-master-6f666cbbd-r9vtx 1/1 Running 0 111m
直到 Pod 变成 Running 状态就表明 master 节点安装成功。
2.2 安装 ElasticSearch 数据节点
现在我们需要安装的是集群的数据节点,它主要来负责集群的数据托管和执行查询。 和 master 节点一样,我们使用一个 ConfigMap 对象来配置我们的数据节点:
# elasticsearch-data.configmap.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-data-config
labels:
app: elasticsearch
role: data
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: false
data: true
ingest: false
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
可以看到和上面的 master 配置非常类似,不过需要注意的是属性 node.data=true。
同样只需要通过 9300 端口和其他节点进行通信:
# elasticsearch-data.service.yaml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-data
labels:
app: elasticsearch
role: data
spec:
ports:
- port: 9300
name: transport
selector:
app: elasticsearch
role: data
---
最后创建一个 StatefulSet 的控制器,因为可能会有多个数据节点,每一个节点的数据不是一样的,需要单独存储,所以也使用了一个 volumeClaimTemplates 来分别创建存储卷,对应的资源清单文件如下所示:
# elasticsearch-data.statefulset.yaml
---
apiVersion: apps/v1
kind: StatefulSet
metadata:
namespace: elastic
name: elasticsearch-data
labels:
app: elasticsearch
role: data
spec:
serviceName: "elasticsearch-data"
selector:
matchLabels:
app: elasticsearch
role: data
template:
metadata:
labels:
app: elasticsearch
role: data
spec:
containers:
- name: elasticsearch-data
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-data
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms1024m -Xmx1024m"
ports:
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: elasticsearch-data-persistent-storage
mountPath: /data/db
volumes:
- name: config
configMap:
name: elasticsearch-data-config
volumeClaimTemplates:
- metadata:
name: elasticsearch-data-persistent-storage
spec:
accessModes: [ "ReadWriteOnce" ]
storageClassName: rook-ceph-block
resources:
requests:
storage: 50Gi
---
直接创建上面的资源对象即可:
$ kubectl apply -f elasticsearch-data.configmap.yaml
-f elasticsearch-data.service.yaml
-f elasticsearch-data.statefulset.yaml
configmap/elasticsearch-data-config created
service/elasticsearch-data created
statefulset.apps/elasticsearch-data created
直到 Pod 变成 Running 状态证明节点启动成功:
$ kubectl get pods -n elastic -l app=elasticsearch
NAME READY STATUS RESTARTS AGE
elasticsearch-data-0 1/1 Running 0 90m
elasticsearch-master-6f666cbbd-r9vtx 1/1 Running 0 111m
2.3 安装 ElasticSearch 客户端节点
最后来安装配置 ElasticSearch 的客户端节点,该节点主要负责暴露一个 HTTP 接口将查询数据传递给数据节点获取数据。
同样使用一个 ConfigMap 对象来配置该节点:
# elasticsearch-client.configmap.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: elasticsearch-client-config
labels:
app: elasticsearch
role: client
data:
elasticsearch.yml: |-
cluster.name: ${CLUSTER_NAME}
node.name: ${NODE_NAME}
discovery.seed_hosts: ${NODE_LIST}
cluster.initial_master_nodes: ${MASTER_NODES}
network.host: 0.0.0.0
node:
master: false
data: false
ingest: true
xpack.security.enabled: true
xpack.monitoring.collection.enabled: true
---
客户端节点需要暴露两个端口,9300端口用于与集群的其他节点进行通信,9200端口用于 HTTP API。对应的 Service 对象如下所示:
# elasticsearch-client.service.yaml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: elasticsearch-client
labels:
app: elasticsearch
role: client
spec:
ports:
- port: 9200
name: client
- port: 9300
name: transport
selector:
app: elasticsearch
role: client
---
使用一个 Deployment 对象来描述客户端节点:
# elasticsearch-client.deployment.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: elasticsearch-client
labels:
app: elasticsearch
role: client
spec:
selector:
matchLabels:
app: elasticsearch
role: client
template:
metadata:
labels:
app: elasticsearch
role: client
spec:
containers:
- name: elasticsearch-client
image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
env:
- name: CLUSTER_NAME
value: elasticsearch
- name: NODE_NAME
value: elasticsearch-client
- name: NODE_LIST
value: elasticsearch-master,elasticsearch-data,elasticsearch-client
- name: MASTER_NODES
value: elasticsearch-master
- name: "ES_JAVA_OPTS"
value: "-Xms256m -Xmx256m"
ports:
- containerPort: 9200
name: client
- containerPort: 9300
name: transport
volumeMounts:
- name: config
mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
readOnly: true
subPath: elasticsearch.yml
- name: storage
mountPath: /data
volumes:
- name: config
configMap:
name: elasticsearch-client-config
- name: "storage"
emptyDir:
medium: ""
---
同样直接创建上面的资源对象来部署 client 节点:
$ kubectl apply -f elasticsearch-client.configmap.yaml
-f elasticsearch-client.service.yaml
-f elasticsearch-client.deployment.yaml
configmap/elasticsearch-client-config created
service/elasticsearch-client created
deployment.apps/elasticsearch-client created
直到所有的节点都部署成功后证明集群安装成功:
$ kubectl get pods -n elastic -l app=elasticsearch
NAME READY STATUS RESTARTS AGE
elasticsearch-client-788bffcc98-hh2s8 1/1 Running 0 83m
elasticsearch-data-0 1/1 Running 0 91m
elasticsearch-master-6f666cbbd-r9vtx 1/1 Running 0 112m
可以通过如下所示的命令来查看集群的状态变化:
$ kubectl logs -f -n elastic
$(kubectl get pods -n elastic | grep elasticsearch-master | sed -n 1p | awk '{print $1}')
| grep "Cluster health status changed from"
{"type": "server", "timestamp": "2020-06-26T03:31:21,353Z", "level": "INFO", "component": "o.e.c.r.a.AllocationService", "cluster.name": "elasticsearch", "node.name": "elasticsearch-master", "message": "Cluster health status changed from [RED] to [GREEN] (reason: [shards started [[.monitoring-es-7-2020.06.26][0]]]).", "cluster.uuid": "SS_nyhNiTDSCE6gG7z-J4w", "node.id": "BdVScO9oQByBHR5rfw-KDA" }
2.4 生成密码
我们启用了 xpack 安全模块来保护我们的集群,所以我们需要一个初始化的密码。我们可以执行如下所示的命令,在客户端节点容器内运行 bin/elasticsearch-setup-passwords
命令来生成默认的用户名和密码:
$ kubectl exec $(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}')
-n elastic
-- bin/elasticsearch-setup-passwords auto -b
Changed password for user apm_system
PASSWORD apm_system = 3Lhx61s6woNLvoL5Bb7t
Changed password for user kibana_system
PASSWORD kibana_system = NpZv9Cvhq4roFCMzpja3
Changed password for user kibana
PASSWORD kibana = NpZv9Cvhq4roFCMzpja3
Changed password for user logstash_system
PASSWORD logstash_system = nNnGnwxu08xxbsiRGk2C
Changed password for user beats_system
PASSWORD beats_system = fen759y5qxyeJmqj6UPp
Changed password for user remote_monitoring_user
PASSWORD remote_monitoring_user = mCP77zjCATGmbcTFFgOX
Changed password for user elastic
PASSWORD elastic = wmxhvsJFeti2dSjbQEAH
注意需要将 elastic 用户名和密码也添加到 Kubernetes 的 Secret 对象中(后续会进行调用):
$ kubectl create secret generic elasticsearch-pw-elastic
-n elastic
--from-literal password=wmxhvsJFeti2dSjbQEAH
secret/elasticsearch-pw-elastic created
3. Kibana
ElasticSearch 集群安装完成后,接着我们可以来部署 Kibana,这是 ElasticSearch 的数据可视化工具,它提供了管理 ElasticSearch 集群和可视化数据的各种功能。
同样首先我们使用 ConfigMap 对象来提供一个文件文件,其中包括对 ElasticSearch 的访问(主机、用户名和密码),这些都是通过环境变量配置的。对应的资源清单文件如下所示:
# kibana.configmap.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: kibana-config
labels:
app: kibana
data:
kibana.yml: |-
server.host: 0.0.0.0
elasticsearch:
hosts: ${ELASTICSEARCH_HOSTS}
username: ${ELASTICSEARCH_USER}
password: ${ELASTICSEARCH_PASSWORD}
---
然后通过一个 NodePort 类型的服务来暴露 Kibana 服务:
# kibana.service.yaml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: kibana
labels:
app: kibana
spec:
type: NodePort
ports:
- port: 5601
name: webinterface
selector:
app: kibana
---
最后通过 Deployment 来部署 Kibana 服务,由于需要通过环境变量提供密码,这里我们使用上面创建的 Secret 对象来引用:
# kibana.deployment.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: kibana
labels:
app: kibana
spec:
selector:
matchLabels:
app: kibana
template:
metadata:
labels:
app: kibana
spec:
containers:
- name: kibana
image: docker.elastic.co/kibana/kibana:7.8.0
ports:
- containerPort: 5601
name: webinterface
env:
- name: ELASTICSEARCH_HOSTS
value: "http://elasticsearch-client.elastic.svc.cluster.local:9200"
- name: ELASTICSEARCH_USER
value: "elastic"
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef: # 调用前面创建的secret密码文件,将密码赋值成为变量使用
name: elasticsearch-pw-elastic
key: password
volumeMounts:
- name: config
mountPath: /usr/share/kibana/config/kibana.yml
readOnly: true
subPath: kibana.yml
volumes:
- name: config
configMap:
name: kibana-config
---
同样直接创建上面的资源清单即可部署:
$ kubectl apply -f kibana.configmap.yaml
-f kibana.service.yaml
-f kibana.deployment.yaml
configmap/kibana-config created
service/kibana created
deployment.apps/kibana created
部署成功后,可以通过查看 Pod 的日志来了解 Kibana 的状态:
$ kubectl logs -f -n elastic $(kubectl get pods -n elastic | grep kibana | sed -n 1p | awk '{print $1}')
| grep "Status changed from yellow to green"
{"type":"log","@timestamp":"2020-06-26T04:20:38Z","tags":["status","plugin:elasticsearch@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from yellow to green - Ready","prevState":"yellow","prevMsg":"Waiting for Elasticsearch"}
当状态变成 green
后,我们就可以通过 NodePort 端口 30474 去浏览器中访问 Kibana 服务了:
$ kubectl get svc kibana -n elastic
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kibana NodePort 10.101.121.31 <none> 5601:30474/TCP 8m18s
如下图所示,使用上面我们创建的 Secret 对象的 elastic 用户和生成的密码即可登录:
登录成功后会自动跳转到 Kibana 首页:
同样也可以自己创建一个新的超级用户,Management → Stack Management → Create User:
使用新的用户名和密码,选择 superuser
这个角色来创建新的用户:
创建成功后就可以使用上面新建的用户登录 Kibana,最后还可以通过 Management → Stack Monitoring 页面查看整个集群的健康状态:
到这里我们就安装成功了 ElasticSearch 与 Kibana,它们将为我们来存储和可视化我们的应用数据(监控指标、日志和追踪)服务。
上面我们已经安装配置了 ElasticSearch 的集群,接下来我们将来使用 Metricbeat 对 Kubernetes 集群进行监控。Metricbeat 是一个服务器上的轻量级采集器,用于定期收集主机和服务的监控指标。这也是我们构建 Kubernetes 全栈监控的第一个部分。
Metribeat 默认采集系统的指标,但是也包含了大量的其他模块来采集有关服务的指标,比如 Nginx、Kafka、MySQL、Redis 等等,支持的完整模块可以在 Elastic 官方网站上查看到 https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-modules.html。
4. kube-state-metrics
首先,我们需要安装 kube-state-metrics,这个组件是一个监听 Kubernetes API 的服务,可以暴露每个资源对象状态的相关指标数据。
要安装 kube-state-metrics 也非常简单,在对应的 GitHub 仓库下就有对应的安装资源清单文件:
$ git clone https://github.com/kubernetes/kube-state-metrics.git
$ cd kube-state-metrics
# 执行安装命令
$ kubectl apply -f examples/standard/
clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics configured
clusterrole.rbac.authorization.k8s.io/kube-state-metrics configured
deployment.apps/kube-state-metrics configured
serviceaccount/kube-state-metrics configured
service/kube-state-metrics configured
$ kubectl get pods -n kube-system -l app.kubernetes.io/name=kube-state-metrics
NAME READY STATUS RESTARTS AGE
kube-state-metrics-6d7449fc78-mgf4f 1/1 Running 0 88s
当 Pod 变成 Running 状态后证明安装成功。
5. Metricbeat
由于我们需要监控所有的节点,所以我们需要使用一个 DaemonSet 控制器来安装 Metricbeat。
首先,使用一个 ConfigMap 来配置 Metricbeat,然后通过 Volume 将该对象挂载到容器中的 /etc/metricbeat.yaml
中去。配置文件中包含了 ElasticSearch 的地址、用户名和密码,以及 Kibana 配置,我们要启用的模块与抓取频率等信息。
# metricbeat.settings.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: metricbeat-config
labels:
app: metricbeat
data:
metricbeat.yml: |-
# 模块配置
metricbeat.modules:
- module: system
period: ${PERIOD} # 设置一个抓取数据的间隔
metricsets: ["cpu", "load", "memory", "network", "process", "process_summary", "core", "diskio", "socket"]
processes: ['.*']
process.include_top_n:
by_cpu: 5 # 根据 CPU 计算的前5个进程
by_memory: 5 # 根据内存计算的前5个进程
- module: system
period: ${PERIOD}
metricsets: ["filesystem", "fsstat"]
processors:
- drop_event.when.regexp: # 排除一些系统目录的监控
system.filesystem.mount_point: '^/(sys|cgroup|proc|dev|etc|host|lib)($|/)'
- module: docker # 抓取docker应用,但是不支持containerd
period: ${PERIOD}
hosts: ["unix:///var/run/docker.sock"]
metricsets: ["container", "cpu", "diskio", "healthcheck", "info", "memory", "network"]
- module: kubernetes # 抓取 kubelet 监控指标
period: ${PERIOD}
node: ${NODE_NAME}
hosts: ["https://${NODE_NAME}:10250"] # 连接kubelet的监控端口,如果需要监控api-server/controller-manager等其他组件的监控,也需要连接端口
metricsets: ["node", "system", "pod", "container", "volume"]
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
ssl.verification_mode: "none"
- module: kubernetes # 抓取 kube-state-metrics 数据
period: ${PERIOD}
node: ${NODE_NAME}
metricsets: ["state_node", "state_deployment", "state_replicaset", "state_pod", "state_container"]
hosts: ["kube-state-metrics.kube-system.svc.cluster.local:8080"]
# 根据 k8s deployment 配置具体的服务模块mongo
metricbeat.autodiscover:
providers:
- type: kubernetes
node: ${NODE_NAME}
templates:
- condition.equals:
kubernetes.labels.app: mongo
config:
- module: mongodb
period: ${PERIOD}
hosts: ["mongo.elastic:27017"]
metricsets: ["dbstats", "status", "collstats", "metrics", "replstatus"]
# ElasticSearch 连接配置
output.elasticsearch:
hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
username: ${ELASTICSEARCH_USERNAME}
password: ${ELASTICSEARCH_PASSWORD}
# 连接到 Kibana
setup.kibana:
host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
# 导入已经存在的 Dashboard
setup.dashboards.enabled: true
# 配置 indice 生命周期
setup.ilm:
policy_file: /etc/indice-lifecycle.json
---
ElasticSearch 的 indice 生命周期表示一组规则,可以根据 indice 的大小或者时长应用到你的 indice 上。比如可以每天或者每次超过 1GB 大小的时候对 indice 进行轮转,我们也可以根据规则配置不同的阶段。由于监控会产生大量的数据,很有可能一天就超过几十G的数据,所以为了防止大量的数据存储,我们可以利用 indice 的生命周期来配置数据保留,这个在 Prometheus 中也有类似的操作。 如下所示的文件中,我们配置成每天或每次超过5GB的时候就对 indice 进行轮转,并删除所有超过10天的 indice 文件,我们这里只保留10天监控数据完全足够了。
# metricbeat.indice-lifecycle.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: metricbeat-indice-lifecycle
labels:
app: metricbeat
data:
indice-lifecycle.json: |-
{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "5GB" ,
"max_age": "1d"
}
}
},
"delete": {
"min_age": "10d",
"actions": {
"delete": {}
}
}
}
}
}
---
接下来就可以来编写 Metricbeat 的 DaemonSet 资源对象清单,如下所示:
# metricbeat.daemonset.yml
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
namespace: elastic
name: metricbeat
labels:
app: metricbeat
spec:
selector:
matchLabels:
app: metricbeat
template:
metadata:
labels:
app: metricbeat
spec:
serviceAccountName: metricbeat
terminationGracePeriodSeconds: 30
hostNetwork: true
dnsPolicy: ClusterFirstWithHostNet
containers:
- name: metricbeat
image: docker.elastic.co/beats/metricbeat:7.8.0
args: [
"-c", "/etc/metricbeat.yml",
"-e", "-system.hostfs=/hostfs"
]
env:
- name: ELASTICSEARCH_HOST
value: elasticsearch-client.elastic.svc.cluster.local
- name: ELASTICSEARCH_PORT
value: "9200"
- name: ELASTICSEARCH_USERNAME
value: elastic
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef: # 调用前面创建的secret密码文件
name: elasticsearch-pw-elastic
key: password
- name: KIBANA_HOST
value: kibana.elastic.svc.cluster.local
- name: KIBANA_PORT
value: "5601"
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: PERIOD
value: "10s"
securityContext:
runAsUser: 0
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
volumeMounts:
- name: config
mountPath: /etc/metricbeat.yml
readOnly: true
subPath: metricbeat.yml
- name: indice-lifecycle
mountPath: /etc/indice-lifecycle.json
readOnly: true
subPath: indice-lifecycle.json
- name: dockersock
mountPath: /var/run/docker.sock
- name: proc
mountPath: /hostfs/proc
readOnly: true
- name: cgroup
mountPath: /hostfs/sys/fs/cgroup
readOnly: true
volumes:
- name: proc
hostPath:
path: /proc
- name: cgroup
hostPath:
path: /sys/fs/cgroup
- name: dockersock
hostPath:
path: /var/run/docker.sock
- name: config
configMap:
defaultMode: 0600
name: metricbeat-config
- name: indice-lifecycle
configMap:
defaultMode: 0600
name: metricbeat-indice-lifecycle
- name: data
hostPath:
path: /var/lib/metricbeat-data
type: DirectoryOrCreate
---
需要注意的将上面的两个 ConfigMap 挂载到容器中去,由于需要 Metricbeat 获取宿主机的相关信息,所以我们这里也挂载了一些宿主机的文件到容器中去,比如 proc
目录,cgroup
目录以及 dockersock
文件。
由于 Metricbeat 需要去获取 Kubernetes 集群的资源对象信息,所以同样需要对应的 RBAC 权限声明,由于是全局作用域的,所以这里我们使用 ClusterRole 进行声明:
# metricbeat.permissions.yml
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: metricbeat
subjects:
- kind: ServiceAccount
name: metricbeat
namespace: elastic
roleRef:
kind: ClusterRole
name: metricbeat
apiGroup: rbac.authorization.k8s.io
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: metricbeat
labels:
app: metricbeat
rules:
- apiGroups: [""]
resources:
- nodes
- namespaces
- events
- pods
verbs: ["get", "list", "watch"]
- apiGroups: ["extensions"]
resources:
- replicasets
verbs: ["get", "list", "watch"]
- apiGroups: ["apps"]
resources:
- statefulsets
- deployments
- replicasets
verbs: ["get", "list", "watch"]
- apiGroups:
- ""
resources:
- nodes/stats
verbs:
- get
---
apiVersion: v1
kind: ServiceAccount
metadata:
namespace: elastic
name: metricbeat
labels:
app: metricbeat
---
直接创建上面的几个资源对象即可:
$ kubectl apply -f metricbeat.settings.configmap.yml
-f metricbeat.indice-lifecycle.configmap.yml
-f metricbeat.daemonset.yml
-f metricbeat.permissions.yml
configmap/metricbeat-config configured
configmap/metricbeat-indice-lifecycle configured
daemonset.extensions/metricbeat created
clusterrolebinding.rbac.authorization.k8s.io/metricbeat created
clusterrole.rbac.authorization.k8s.io/metricbeat created
serviceaccount/metricbeat created
$ kubectl get pods -n elastic -l app=metricbeat
NAME READY STATUS RESTARTS AGE
metricbeat-2gstq 1/1 Running 0 18m
metricbeat-99rdb 1/1 Running 0 18m
metricbeat-9bb27 1/1 Running 0 18m
metricbeat-cgbrg 1/1 Running 0 18m
metricbeat-l2csd 1/1 Running 0 18m
metricbeat-lsrgv 1/1 Running 0 18m
当 Metricbeat 的 Pod 变成 Running 状态后,正常我们就可以在 Kibana 中去查看对应的监控信息了。
在 Kibana 左侧页面 Observability → Metrics 进入指标监控页面,正常就可以看到一些监控数据了:
也可以根据自己的需求进行筛选,比如我们可以按照 Kubernetes Namespace 进行分组作为视图查看监控信息:
由于我们在配置文件中设置了属性 setup.dashboards.enabled=true,所以 Kibana 会导入预先已经存在的一些 Dashboard。我们可以在左侧菜单进入 Kibana → Dashboard 页面,我们会看到一个大约有 50 个 Metricbeat 的 Dashboard 列表,我们可以根据需要筛选 Dashboard,比如我们要查看集群节点的信息,可以查看 [Metricbeat Kubernetes] Overview ECS
这个 Dashboard:
我们还单独启用了 mongodb 模块,我们可以使用 [Metricbeat MongoDB] Overview ECS 这个 Dashboard 来查看监控信息:
我们还启用了 docker 这个模块,也可以使用 [Metricbeat Docker] Overview ECS 这个 Dashboard 来查看监控信息:
到这里我们就完成了使用 Metricbeat 来监控 Kubernetes 集群信息,在下面我们学习如何使用 Filebeat 来收集日志以监控 Kubernetes 集群。
6. Filebeat
我们将要安装配置 Filebeat 来收集 Kubernetes 集群中的日志数据,然后发送到 ElasticSearch 去中,Filebeat 是一个轻量级的日志采集代理,还可以配置特定的模块来解析和可视化应用(比如数据库、Nginx 等)的日志格式。
和 Metricbeat 类似,Filebeat 也需要一个配置文件来设置和 ElasticSearch 的链接信息、和 Kibana 的连接已经日志采集和解析的方式。
如下所示的 ConfigMap 资源对象就是我们这里用于日志采集的配置信息(可以从官方网站上获取完整的可配置信息):
# filebeat.settings.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: filebeat-config
labels:
app: filebeat
data:
filebeat.yml: |-
filebeat.inputs:
- type: container
enabled: true
paths:
- /var/log/containers/*.log
processors:
- add_kubernetes_metadata:
in_cluster: true
host: ${NODE_NAME}
matchers:
- logs_path:
logs_path: "/var/log/containers/"
filebeat.autodiscover:
providers:
- type: kubernetes
templates:
- condition.equals:
kubernetes.labels.app: mongo
config:
- module: mongodb
enabled: true
log:
input:
type: docker
containers.ids:
- ${data.kubernetes.container.id}
processors:
- drop_event:
when.or:
- and:
- regexp:
message: '^d+.d+.d+.d+ '
- equals:
fileset.name: error
- and:
- not:
regexp:
message: '^d+.d+.d+.d+ '
- equals:
fileset.name: access
- add_cloud_metadata:
- add_kubernetes_metadata:
matchers:
- logs_path:
logs_path: "/var/log/containers/"
- add_docker_metadata:
output.elasticsearch:
hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
username: ${ELASTICSEARCH_USERNAME}
password: ${ELASTICSEARCH_PASSWORD}
setup.kibana:
host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
setup.dashboards.enabled: true
setup.template.enabled: true
setup.ilm:
policy_file: /etc/indice-lifecycle.json
---
我们配置采集 /var/log/containers/
下面的所有日志数据,并且使用 inCluster
的模式访问 Kubernetes 的 APIServer,获取日志数据的 Meta 信息,将日志直接发送到 Elasticsearch。
此外还通过 policy_file
定义了 indice 的回收策略:
# filebeat.indice-lifecycle.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: filebeat-indice-lifecycle
labels:
app: filebeat
data:
indice-lifecycle.json: |-
{
"policy": {
"phases": {
"hot": {
"actions": {
"rollover": {
"max_size": "5GB" ,
"max_age": "1d"
}
}
},
"delete": {
"min_age": "30d",
"actions": {
"delete": {}
}
}
}
}
}
---
同样为了采集每个节点上的日志数据,我们这里使用一个 DaemonSet 控制器,使用上面的配置来采集节点的日志。
#filebeat.daemonset.yml
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
namespace: elastic
name: filebeat
labels:
app: filebeat
spec:
selector:
matchLabels:
app: filebeat
template:
metadata:
labels:
app: filebeat
spec:
serviceAccountName: filebeat
terminationGracePeriodSeconds: 30
containers:
- name: filebeat
image: docker.elastic.co/beats/filebeat:7.8.0
args: [
"-c", "/etc/filebeat.yml",
"-e",
]
env:
- name: ELASTICSEARCH_HOST
value: elasticsearch-client.elastic.svc.cluster.local
- name: ELASTICSEARCH_PORT
value: "9200"
- name: ELASTICSEARCH_USERNAME
value: elastic
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef:
name: elasticsearch-pw-elastic
key: password
- name: KIBANA_HOST
value: kibana.elastic.svc.cluster.local
- name: KIBANA_PORT
value: "5601"
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
securityContext:
runAsUser: 0
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
volumeMounts:
- name: config
mountPath: /etc/filebeat.yml
readOnly: true
subPath: filebeat.yml
- name: filebeat-indice-lifecycle
mountPath: /etc/indice-lifecycle.json
readOnly: true
subPath: indice-lifecycle.json
- name: data
mountPath: /usr/share/filebeat/data
- name: varlog
mountPath: /var/log
readOnly: true
- name: varlibdockercontainers
mountPath: /var/lib/docker/containers
readOnly: true
- name: dockersock
mountPath: /var/run/docker.sock
volumes:
- name: config
configMap:
defaultMode: 0600
name: filebeat-config
- name: filebeat-indice-lifecycle
configMap:
defaultMode: 0600
name: filebeat-indice-lifecycle
- name: varlog
hostPath:
path: /var/log
- name: varlibdockercontainers
hostPath:
path: /var/lib/docker/containers
- name: dockersock
hostPath:
path: /var/run/docker.sock
- name: data
hostPath:
path: /var/lib/filebeat-data
type: DirectoryOrCreate
---
我们这里使用的是 Kubeadm 搭建的集群,默认 Master 节点是有污点的,所以如果还想采集 Master 节点的日志,还必须加上对应的容忍,我这里不采集就没有添加容忍了。 此外由于需要获取日志在 Kubernetes 集群中的 Meta 信息,比如 Pod 名称、所在的命名空间等,所以 Filebeat 需要访问 APIServer,自然就需要对应的 RBAC 权限了,所以还需要进行权限声明:
# filebeat.permission.yml
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: filebeat
subjects:
- kind: ServiceAccount
name: filebeat
namespace: elastic
roleRef:
kind: ClusterRole
name: filebeat
apiGroup: rbac.authorization.k8s.io
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: filebeat
labels:
app: filebeat
rules:
- apiGroups: [""]
resources:
- namespaces
- pods
verbs:
- get
- watch
- list
---
apiVersion: v1
kind: ServiceAccount
metadata:
namespace: elastic
name: filebeat
labels:
app: filebeat
---
然后直接安装部署上面的几个资源对象即可:
$ kubectl apply -f filebeat.settings.configmap.yml
-f filebeat.indice-lifecycle.configmap.yml
-f filebeat.daemonset.yml
-f filebeat.permissions.yml
configmap/filebeat-config created
configmap/filebeat-indice-lifecycle created
daemonset.apps/filebeat created
clusterrolebinding.rbac.authorization.k8s.io/filebeat created
clusterrole.rbac.authorization.k8s.io/filebeat created
serviceaccount/filebeat created
当所有的 Filebeat 和 Logstash 的 Pod 都变成 Running 状态后,证明部署完成。现在我们就可以进入到 Kibana 页面中去查看日志了。左侧菜单 Observability → Logs
此外还可以从上节我们提到的 Metrics 页面进入查看 Pod 的日志:
点击 Kubernetes Pod logs
获取需要查看的 Pod 日志:
如果集群中要采集的日志数据量太大,直接将数据发送给 ElasticSearch,对 ES 压力比较大,这种情况一般可以加一个类似于 Kafka 这样的中间件来缓冲下,或者通过 Logstash 来收集 Filebeat 的日志。
这里我们就完成了使用 Filebeat 采集 Kubernetes 集群的日志,在下篇文章中,我们继续学习如何使用 Elastic APM 来追踪 Kubernetes 集群应用。
7. Elastic APM
Elastic APM 是 Elastic Stack 上用于应用性能监控的工具,它允许我们通过收集传入请求、数据库查询、缓存调用等方式来实时监控应用性能。这可以让我们更加轻松快速定位性能问题。
Elastic APM 是兼容 OpenTracing 的,所以我们可以使用大量现有的库来跟踪应用程序性能。
比如我们可以在一个分布式环境(微服务架构)中跟踪一个请求,并轻松找到可能潜在的性能瓶颈。
Elastic APM 通过一个名为 APM-Server 的组件提供服务,用于收集并向 ElasticSearch 以及和应用一起运行的 agent 程序发送追踪数据。
安装 APM-Server
首先我们需要在 Kubernetes 集群上安装 APM-Server 来收集 agent 的追踪数据,并转发给 ElasticSearch,这里同样我们使用一个 ConfigMap 来配置:
# apm.configmap.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: elastic
name: apm-server-config
labels:
app: apm-server
data:
apm-server.yml: |-
apm-server:
host: "0.0.0.0:8200"
output.elasticsearch:
hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
username: ${ELASTICSEARCH_USERNAME}
password: ${ELASTICSEARCH_PASSWORD}
setup.kibana:
host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
---
APM-Server 需要暴露 8200 端口来让 agent 转发他们的追踪数据,新建一个对应的 Service 对象即可:
# apm.service.yml
---
apiVersion: v1
kind: Service
metadata:
namespace: elastic
name: apm-server
labels:
app: apm-server
spec:
ports:
- port: 8200
name: apm-server
selector:
app: apm-server
---
然后使用一个 Deployment 资源对象管理即可:
# apm.deployment.yml
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: apm-server
labels:
app: apm-server
spec:
replicas: 1
selector:
matchLabels:
app: apm-server
template:
metadata:
labels:
app: apm-server
spec:
containers:
- name: apm-server
image: docker.elastic.co/apm/apm-server:7.8.0
env:
- name: ELASTICSEARCH_HOST
value: elasticsearch-client.elastic.svc.cluster.local
- name: ELASTICSEARCH_PORT
value: "9200"
- name: ELASTICSEARCH_USERNAME
value: elastic
- name: ELASTICSEARCH_PASSWORD
valueFrom:
secretKeyRef:
name: elasticsearch-pw-elastic
key: password
- name: KIBANA_HOST
value: kibana.elastic.svc.cluster.local
- name: KIBANA_PORT
value: "5601"
ports:
- containerPort: 8200
name: apm-server
volumeMounts:
- name: config
mountPath: /usr/share/apm-server/apm-server.yml
readOnly: true
subPath: apm-server.yml
volumes:
- name: config
configMap:
name: apm-server-config
---
直接部署上面的几个资源对象:
$ kubectl apply -f apm.configmap.yml
-f apm.service.yml
-f apm.deployment.yml
configmap/apm-server-config created
service/apm-server created
deployment.extensions/apm-server created
当 Pod 处于 Running 状态证明运行成功:
$ kubectl get pods -n elastic -l app=apm-server
NAME READY STATUS RESTARTS AGE
apm-server-667bfc5cff-zj8nq 1/1 Running 0 12m
接下来我们可以在第一节中部署的 Spring-Boot 应用上安装一个 agent 应用。
配置 Java Agent
接下来我们在示例应用程序 spring-boot-simple 上配置一个 Elastic APM Java agent。 首先我们需要把 elastic-apm-agent-1.8.0.jar 这个 jar 包程序内置到应用容器中去,在构建镜像的 Dockerfile 文件中添加一行如下所示的命令直接下载该 JAR 包即可:
RUN wget -O /apm-agent.jar https://search.maven.org/remotecontent?filepath=co/elastic/apm/elastic-apm-agent/1.8.0/elastic-apm-agent-1.8.0.jar
完整的 Dockerfile 文件如下所示:
FROM openjdk:8-jdk-alpine
ENV ELASTIC_APM_VERSION "1.8.0"
RUN wget -O /apm-agent.jar https://search.maven.org/remotecontent?filepath=co/elastic/apm/elastic-apm-agent/$ELASTIC_APM_VERSION/elastic-apm-agent-$ELASTIC_APM_VERSION.jar
COPY target/spring-boot-simple.jar /app.jar
CMD java -jar /app.jar
然后需要在示例应用中添加上如下依赖关系,这样我们就可以集成 open-tracing 的依赖库或者使用 Elastic APM API 手动检测。
<dependency>
<groupId>co.elastic.apm</groupId>
<artifactId>apm-agent-api</artifactId>
<version>${elastic-apm.version}</version>
</dependency>
<dependency>
<groupId>co.elastic.apm</groupId>
<artifactId>apm-opentracing</artifactId>
<version>${elastic-apm.version}</version>
</dependency>
<dependency>
<groupId>io.opentracing.contrib</groupId>
<artifactId>opentracing-spring-cloud-mongo-starter</artifactId>
<version>${opentracing-spring-cloud.version}</version>
</dependency>
然后需要修改第一篇文章中使用 Deployment 部署的 Spring-Boot 应用,需要开启 Java agent 并且要连接到 APM-Server。
# spring-boot-simple.deployment.yml
---
apiVersion: apps/v1
kind: Deployment
metadata:
namespace: elastic
name: spring-boot-simple
labels:
app: spring-boot-simple
spec:
selector:
matchLabels:
app: spring-boot-simple
template:
metadata:
labels:
app: spring-boot-simple
spec:
containers:
- image: cnych/spring-boot-simple:0.0.1-SNAPSHOT
imagePullPolicy: Always
name: spring-boot-simple
command:
- "java"
- "-javaagent:/apm-agent.jar"
- "-Delastic.apm.active=$(ELASTIC_APM_ACTIVE)"
- "-Delastic.apm.server_urls=$(ELASTIC_APM_SERVER)"
- "-Delastic.apm.service_name=spring-boot-simple"
- "-jar"
- "app.jar"
env:
- name: SPRING_DATA_MONGODB_HOST
value: mongo
- name: ELASTIC_APM_ACTIVE
value: "true"
- name: ELASTIC_APM_SERVER
value: http://apm-server.elastic.svc.cluster.local:8200
ports:
- containerPort: 8080
---
然后重新部署上面的示例应用:
$ kubectl apply -f spring-boot-simple.yml
$ kubectl get pods -n elastic -l app=spring-boot-simple
NAME READY STATUS RESTARTS AGE
spring-boot-simple-fb5564885-tf68d 1/1 Running 0 5m11s
$ kubectl get svc -n elastic -l app=spring-boot-simple
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
spring-boot-simple NodePort 10.109.55.134 <none> 8080:31847/TCP 9d
当示例应用重新部署完成后,执行如下几个请求:
get messages
获取所有发布的 messages 数据:
$ curl -X GET http://k8s.qikqiak.com:31847/message
get messages (慢请求)
使用 sleep=<ms>
来模拟慢请求:
$ curl -X GET http://k8s.qikqiak.com:31847/message?sleep=3000
get messages (error)
使用 error=true 来触发一异常:
$ curl -X GET http://k8s.qikqiak.com:31847/message?error=true
现在我们去到 Kibana 页面中路由到 APM 页面,我们应该就可以看到 spring-boot-simple 应用的数据了。
点击应用就可以查看到当前应用的各种性能追踪数据:
可以查看现在的错误数据:
还可以查看 JVM 的监控数据:
除此之外,我们还可以添加报警信息,就可以在第一时间掌握应用的性能状况了。
总结
到这里我们就完成了使用 Elastic Stack 进行 Kubernetes 环境的全栈监控,通过监控指标、日志、性能追踪来了解我们的应用各方面运行情况,加快我们排查和解决各种问题。
问题排错
-
关于kibana调取secret密码时,登入kibana内查看密码变量发现变量是一个乱码值,这个目前只在变量挂入kibana容器中发现。
解决办法:将容器变量调用设置成密码
-
es 自动生成索引时,使用索引模板,生成默认tag 过多,可以通过修改索引模板的方法来进行减少索引建立