zoukankan      html  css  js  c++  java
  • 使用 Elastic 技术栈构建 Kubernetes全栈监控

    以下我们描述如何使用 Elastic 技术栈来为 Kubernetes 构建监控环境。可观测性的目标是为生产环境提供运维工具来检测服务不可用的情况(比如服务宕机、错误或者响应变慢等),并且保留一些可以排查的信息,以帮助我们定位问题。总的来说主要包括3个方面:

    • 监控指标提供系统各个组件的时间序列数据,比如 CPU、内存、磁盘、网络等信息,通常可以用来显示系统的整体状况以及检测某个时间的异常行为
    • 日志为运维人员提供了一个数据来分析系统的一些错误行为,通常将系统、服务和应用的日志集中收集在同一个数据库中
    • 追踪或者 APM(应用性能监控)提供了一个更加详细的应用视图,可以将服务执行的每一个请求和步骤都记录下来(比如 HTTP 调用、数据库查询等),通过追踪这些数据,我们可以检测到服务的性能,并相应地改进或修复我们的系统。

    img

    本文我们就将在 Kubernetes 集群中使用由 ElasticSearch、Kibana、Filebeat、Metricbeat 和 APM-Server 组成的 Elastic 技术栈来监控系统环境。为了更好地去了解这些组件的配置,我们这里将采用手写资源清单文件的方式来安装这些组件,当然我们也可以使用 Helm 等其他工具来快速安装配置。

    img

    接下来我们就来学习下如何使用 Elastic 技术构建 Kubernetes 监控栈。我们这里的试验环境是 Kubernetes v1.16.3 版本的集群(已经配置完成),为方便管理,我们将所有的资源对象都部署在一个名为 elastic 的命名空间中:

    $ kubectl create ns elastic
    namespace/elastic created
    

    1. SpringBoot 和 MongoDB 开发的示例应用

    这里我们先部署一个使用 SpringBoot 和 MongoDB 开发的示例应用。首先部署一个 MongoDB 应用,对应的资源清单文件如下所示:

    # mongo.yml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: mongo
      namespace: elastic
      labels:
        app: mongo
    spec:
      ports:
      - port: 27017
        protocol: TCP
      selector:
        app: mongo
    ---
    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      namespace: elastic
      name: mongo
      labels:
        app: mongo
    spec:
      serviceName: "mongo"
      selector:
        matchLabels:
          app: mongo
      template:
        metadata:
          labels:
            app: mongo
        spec:
          containers:
          - name: mongo
            image: mongo
            ports:
            - containerPort: 27017
            volumeMounts:
            - name: data
              mountPath: /data/db
      volumeClaimTemplates:
      - metadata:
          name: data
        spec:
          accessModes: [ "ReadWriteOnce" ]
          storageClassName: rook-ceph-block  # 使用支持 RWO 的 StorageClass
          resources:
            requests:
              storage: 1Gi
    

    这里我们使用了一个名为 rook-ceph-block 的 StorageClass 对象来自动创建 PV,可以替换成自己集群中支持 RWO 的 StorageClass 对象即可。存储采用rook-ceph 实践配置,直接使用上面的资源清单创建即可:

    $ kubectl apply -f mongo.yml
    service/mongo created
    statefulset.apps/mongo created
    $ kubectl get pods -n elastic -l app=mongo             
    NAME      READY   STATUS    RESTARTS   AGE
    mongo-0   1/1     Running   0          34m
    

    直到 Pod 变成 Running 状态证明 mongodb 部署成功了。接下来部署 SpringBoot 的 API 应用,这里我们通过 NodePort 类型的 Service 服务来暴露该服务,对应的资源清单文件如下所示:

    # spring-boot-simple.yml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: spring-boot-simple
      labels:
        app: spring-boot-simple
    spec:
      type: NodePort
      ports:
      - port: 8080
        protocol: TCP
      selector:
        app: spring-boot-simple
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: spring-boot-simple
      labels:
        app: spring-boot-simple
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: spring-boot-simple
      template:
        metadata:
          labels:
            app: spring-boot-simple
        spec:
          containers:
          - image: cnych/spring-boot-simple:0.0.1-SNAPSHOT
            name: spring-boot-simple
            env:
            - name: SPRING_DATA_MONGODB_HOST  # 指定MONGODB地址
              value: mongo
            ports:
            - containerPort: 8080
    

    同样直接创建上面的应用的应用即可:

    $ kubectl apply -f spring-boot-simple.yaml 
    service/spring-boot-simple created
    deployment.apps/spring-boot-simple created
    $ kubectl get pods -n elastic -l app=spring-boot-simple
    NAME                                  READY   STATUS    RESTARTS   AGE
    spring-boot-simple-64795494bf-hqpcj   1/1     Running   0          24m
    $ kubectl get svc -n elastic -l app=spring-boot-simple
    NAME                 TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    spring-boot-simple   NodePort   10.109.55.134   <none>        8080:31847/TCP   84s
    

    当应用部署完成后,我们就可以通过地址 http://:31847 访问应用,可以通过如下命令进行简单测试:

    $ curl -X GET  http://k8s.qikqiak.com:31847/
    Greetings from Spring Boot!
    

    发送一个 POST 请求:

    $ curl -X POST http://k8s.qikqiak.com:31847/message -d 'hello world'
    {"id":"5ef55c130d53190001bf74d2","message":"hello+world=","postedAt":"2020-06-26T02:23:15.860+0000"}
    

    获取所以消息数据:

    $ curl -X GET http://k8s.qikqiak.com:31847/message
    [{"id":"5ef55c130d53190001bf74d2","message":"hello+world=","postedAt":"2020-06-26T02:23:15.860+0000"}]
    

    2. ElasticSearch 集群

    要建立一个 Elastic 技术的监控栈,当然首先我们需要部署 ElasticSearch,它是用来存储所有的指标、日志和追踪的数据库,这里我们通过3个不同角色的可扩展的节点组成一个集群。

    2.1 安装 ElasticSearch 主节点

    设置集群的第一个节点为 Master 主节点,来负责控制整个集群。首先创建一个 ConfigMap 对象,用来描述集群的一些配置信息,以方便将 ElasticSearch 的主节点配置到集群中并开启安全认证功能。对应的资源清单文件如下所示:

    # elasticsearch-master.configmap.yaml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: elasticsearch-master-config
      labels:
        app: elasticsearch
        role: master
    data:
      elasticsearch.yml: |-
        cluster.name: ${CLUSTER_NAME}
        node.name: ${NODE_NAME}
        discovery.seed_hosts: ${NODE_LIST}
        cluster.initial_master_nodes: ${MASTER_NODES}
    
        network.host: 0.0.0.0
    
        node:
          master: true
          data: false
          ingest: false
    
        xpack.security.enabled: true
        xpack.monitoring.collection.enabled: true
    ---
    

    然后创建一个 Service 对象,在 Master 节点下,我们只需要通过用于集群通信的 9300 端口进行通信。资源清单文件如下所示:

    # elasticsearch-master.service.yaml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: elasticsearch-master
      labels:
        app: elasticsearch
        role: master
    spec:
      ports:
      - port: 9300
        name: transport
      selector:
        app: elasticsearch
        role: master
    ---
    

    最后使用一个 Deployment 对象来定义 Master 节点应用,资源清单文件如下所示:

    # elasticsearch-master.deployment.yaml
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: elasticsearch-master
      labels:
        app: elasticsearch
        role: master
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: elasticsearch
          role: master
      template:
        metadata:
          labels:
            app: elasticsearch
            role: master
        spec:
          containers:
          - name: elasticsearch-master
            image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
            env:
            - name: CLUSTER_NAME
              value: elasticsearch
            - name: NODE_NAME
              value: elasticsearch-master
            - name: NODE_LIST
              value: elasticsearch-master,elasticsearch-data,elasticsearch-client
            - name: MASTER_NODES
              value: elasticsearch-master
            - name: "ES_JAVA_OPTS"
              value: "-Xms512m -Xmx512m"
            ports:
            - containerPort: 9300
              name: transport
            volumeMounts:
            - name: config
              mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
              readOnly: true
              subPath: elasticsearch.yml
            - name: storage
              mountPath: /data
          volumes:
          - name: config
            configMap:
              name: elasticsearch-master-config
          - name: "storage"
            emptyDir:
              medium: ""
    ---
    

    直接创建上面的3个资源对象即可:

    $ kubectl apply  -f elasticsearch-master.configmap.yaml 
                     -f elasticsearch-master.service.yaml 
                     -f elasticsearch-master.deployment.yaml
    
    configmap/elasticsearch-master-config created
    service/elasticsearch-master created
    deployment.apps/elasticsearch-master created
    $ kubectl get pods -n elastic -l app=elasticsearch
    NAME                                    READY   STATUS    RESTARTS   AGE
    elasticsearch-master-6f666cbbd-r9vtx    1/1     Running   0          111m
    

    直到 Pod 变成 Running 状态就表明 master 节点安装成功。

    2.2 安装 ElasticSearch 数据节点

    现在我们需要安装的是集群的数据节点,它主要来负责集群的数据托管和执行查询。 和 master 节点一样,我们使用一个 ConfigMap 对象来配置我们的数据节点:

    # elasticsearch-data.configmap.yaml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: elasticsearch-data-config
      labels:
        app: elasticsearch
        role: data
    data:
      elasticsearch.yml: |-
        cluster.name: ${CLUSTER_NAME}
        node.name: ${NODE_NAME}
        discovery.seed_hosts: ${NODE_LIST}
        cluster.initial_master_nodes: ${MASTER_NODES}
    
        network.host: 0.0.0.0
    
        node:
          master: false
          data: true
          ingest: false
    
        xpack.security.enabled: true
        xpack.monitoring.collection.enabled: true
    ---
    

    可以看到和上面的 master 配置非常类似,不过需要注意的是属性 node.data=true。

    同样只需要通过 9300 端口和其他节点进行通信:

    # elasticsearch-data.service.yaml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: elasticsearch-data
      labels:
        app: elasticsearch
        role: data
    spec:
      ports:
      - port: 9300
        name: transport
      selector:
        app: elasticsearch
        role: data
    ---
    

    最后创建一个 StatefulSet 的控制器,因为可能会有多个数据节点,每一个节点的数据不是一样的,需要单独存储,所以也使用了一个 volumeClaimTemplates 来分别创建存储卷,对应的资源清单文件如下所示:

    # elasticsearch-data.statefulset.yaml
    ---
    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      namespace: elastic
      name: elasticsearch-data
      labels:
        app: elasticsearch
        role: data
    spec:
      serviceName: "elasticsearch-data"
      selector:
        matchLabels:
          app: elasticsearch
          role: data
      template:
        metadata:
          labels:
            app: elasticsearch
            role: data
        spec:
          containers:
          - name: elasticsearch-data
            image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
            env:
            - name: CLUSTER_NAME
              value: elasticsearch
            - name: NODE_NAME
              value: elasticsearch-data
            - name: NODE_LIST
              value: elasticsearch-master,elasticsearch-data,elasticsearch-client
            - name: MASTER_NODES
              value: elasticsearch-master
            - name: "ES_JAVA_OPTS"
              value: "-Xms1024m -Xmx1024m"
            ports:
            - containerPort: 9300
              name: transport
            volumeMounts:
            - name: config
              mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
              readOnly: true
              subPath: elasticsearch.yml
            - name: elasticsearch-data-persistent-storage
              mountPath: /data/db
          volumes:
          - name: config
            configMap:
              name: elasticsearch-data-config
      volumeClaimTemplates:
      - metadata:
          name: elasticsearch-data-persistent-storage
        spec:
          accessModes: [ "ReadWriteOnce" ]
          storageClassName: rook-ceph-block
          resources:
            requests:
              storage: 50Gi
    ---
    

    直接创建上面的资源对象即可:

    $ kubectl apply -f elasticsearch-data.configmap.yaml 
                    -f elasticsearch-data.service.yaml 
                    -f elasticsearch-data.statefulset.yaml
    
    configmap/elasticsearch-data-config created
    service/elasticsearch-data created
    statefulset.apps/elasticsearch-data created
    

    直到 Pod 变成 Running 状态证明节点启动成功:

    $ kubectl get pods -n elastic -l app=elasticsearch
    NAME                                    READY   STATUS    RESTARTS   AGE
    elasticsearch-data-0                    1/1     Running   0          90m
    elasticsearch-master-6f666cbbd-r9vtx    1/1     Running   0          111m
    

    2.3 安装 ElasticSearch 客户端节点

    最后来安装配置 ElasticSearch 的客户端节点,该节点主要负责暴露一个 HTTP 接口将查询数据传递给数据节点获取数据。

    同样使用一个 ConfigMap 对象来配置该节点:

    # elasticsearch-client.configmap.yaml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: elasticsearch-client-config
      labels:
        app: elasticsearch
        role: client
    data:
      elasticsearch.yml: |-
        cluster.name: ${CLUSTER_NAME}
        node.name: ${NODE_NAME}
        discovery.seed_hosts: ${NODE_LIST}
        cluster.initial_master_nodes: ${MASTER_NODES}
    
        network.host: 0.0.0.0
    
        node:
          master: false
          data: false
          ingest: true
    
        xpack.security.enabled: true
        xpack.monitoring.collection.enabled: true
    ---
    

    客户端节点需要暴露两个端口,9300端口用于与集群的其他节点进行通信,9200端口用于 HTTP API。对应的 Service 对象如下所示:

    # elasticsearch-client.service.yaml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: elasticsearch-client
      labels:
        app: elasticsearch
        role: client
    spec:
      ports:
      - port: 9200
        name: client
      - port: 9300
        name: transport
      selector:
        app: elasticsearch
        role: client
    ---
    

    使用一个 Deployment 对象来描述客户端节点:

    # elasticsearch-client.deployment.yaml
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: elasticsearch-client
      labels:
        app: elasticsearch
        role: client
    spec:
      selector:
        matchLabels:
          app: elasticsearch
          role: client
      template:
        metadata:
          labels:
            app: elasticsearch
            role: client
        spec:
          containers:
          - name: elasticsearch-client
            image: docker.elastic.co/elasticsearch/elasticsearch:7.8.0
            env:
            - name: CLUSTER_NAME
              value: elasticsearch
            - name: NODE_NAME
              value: elasticsearch-client
            - name: NODE_LIST
              value: elasticsearch-master,elasticsearch-data,elasticsearch-client
            - name: MASTER_NODES
              value: elasticsearch-master
            - name: "ES_JAVA_OPTS"
              value: "-Xms256m -Xmx256m"
            ports:
            - containerPort: 9200
              name: client
            - containerPort: 9300
              name: transport
            volumeMounts:
            - name: config
              mountPath: /usr/share/elasticsearch/config/elasticsearch.yml
              readOnly: true
              subPath: elasticsearch.yml
            - name: storage
              mountPath: /data
          volumes:
          - name: config
            configMap:
              name: elasticsearch-client-config
          - name: "storage"
            emptyDir:
              medium: ""
    ---
    

    同样直接创建上面的资源对象来部署 client 节点:

    $ kubectl apply  -f elasticsearch-client.configmap.yaml 
                     -f elasticsearch-client.service.yaml 
                     -f elasticsearch-client.deployment.yaml
    
    configmap/elasticsearch-client-config created
    service/elasticsearch-client created
    deployment.apps/elasticsearch-client created
    

    直到所有的节点都部署成功后证明集群安装成功:

    $ kubectl get pods -n elastic -l app=elasticsearch
    NAME                                    READY   STATUS    RESTARTS   AGE
    elasticsearch-client-788bffcc98-hh2s8   1/1     Running   0          83m
    elasticsearch-data-0                    1/1     Running   0          91m
    elasticsearch-master-6f666cbbd-r9vtx    1/1     Running   0          112m
    

    可以通过如下所示的命令来查看集群的状态变化:

    $ kubectl logs -f -n elastic 
      $(kubectl get pods -n elastic | grep elasticsearch-master | sed -n 1p | awk '{print $1}') 
      | grep "Cluster health status changed from"
    
    {"type": "server", "timestamp": "2020-06-26T03:31:21,353Z", "level": "INFO", "component": "o.e.c.r.a.AllocationService", "cluster.name": "elasticsearch", "node.name": "elasticsearch-master", "message": "Cluster health status changed from [RED] to [GREEN] (reason: [shards started [[.monitoring-es-7-2020.06.26][0]]]).", "cluster.uuid": "SS_nyhNiTDSCE6gG7z-J4w", "node.id": "BdVScO9oQByBHR5rfw-KDA"  }
    

    2.4 生成密码

    我们启用了 xpack 安全模块来保护我们的集群,所以我们需要一个初始化的密码。我们可以执行如下所示的命令,在客户端节点容器内运行 bin/elasticsearch-setup-passwords 命令来生成默认的用户名和密码:

    $ kubectl exec $(kubectl get pods -n elastic | grep elasticsearch-client | sed -n 1p | awk '{print $1}') 
        -n elastic 
        -- bin/elasticsearch-setup-passwords auto -b
    
    Changed password for user apm_system
    PASSWORD apm_system = 3Lhx61s6woNLvoL5Bb7t
    
    Changed password for user kibana_system
    PASSWORD kibana_system = NpZv9Cvhq4roFCMzpja3
    
    Changed password for user kibana
    PASSWORD kibana = NpZv9Cvhq4roFCMzpja3
    
    Changed password for user logstash_system
    PASSWORD logstash_system = nNnGnwxu08xxbsiRGk2C
    
    Changed password for user beats_system
    PASSWORD beats_system = fen759y5qxyeJmqj6UPp
    
    Changed password for user remote_monitoring_user
    PASSWORD remote_monitoring_user = mCP77zjCATGmbcTFFgOX
    
    Changed password for user elastic
    PASSWORD elastic = wmxhvsJFeti2dSjbQEAH
    

    注意需要将 elastic 用户名和密码也添加到 Kubernetes 的 Secret 对象中(后续会进行调用):

    $ kubectl create secret generic elasticsearch-pw-elastic 
        -n elastic 
        --from-literal password=wmxhvsJFeti2dSjbQEAH
    secret/elasticsearch-pw-elastic created
    

    3. Kibana

    ElasticSearch 集群安装完成后,接着我们可以来部署 Kibana,这是 ElasticSearch 的数据可视化工具,它提供了管理 ElasticSearch 集群和可视化数据的各种功能。

    同样首先我们使用 ConfigMap 对象来提供一个文件文件,其中包括对 ElasticSearch 的访问(主机、用户名和密码),这些都是通过环境变量配置的。对应的资源清单文件如下所示:

    # kibana.configmap.yaml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: kibana-config
      labels:
        app: kibana
    data:
      kibana.yml: |-
        server.host: 0.0.0.0
    
        elasticsearch:
          hosts: ${ELASTICSEARCH_HOSTS}
          username: ${ELASTICSEARCH_USER}
          password: ${ELASTICSEARCH_PASSWORD}
    ---
    

    然后通过一个 NodePort 类型的服务来暴露 Kibana 服务:

    # kibana.service.yaml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: kibana
      labels:
        app: kibana
    spec:
      type: NodePort
      ports:
      - port: 5601
        name: webinterface
      selector:
        app: kibana
    ---
    

    最后通过 Deployment 来部署 Kibana 服务,由于需要通过环境变量提供密码,这里我们使用上面创建的 Secret 对象来引用:

    # kibana.deployment.yaml
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: kibana
      labels:
        app: kibana
    spec:
      selector:
        matchLabels:
          app: kibana
      template:
        metadata:
          labels:
            app: kibana
        spec:
          containers:
          - name: kibana
            image: docker.elastic.co/kibana/kibana:7.8.0
            ports:
            - containerPort: 5601
              name: webinterface
            env:
            - name: ELASTICSEARCH_HOSTS
              value: "http://elasticsearch-client.elastic.svc.cluster.local:9200"
            - name: ELASTICSEARCH_USER
              value: "elastic"
            - name: ELASTICSEARCH_PASSWORD
              valueFrom:
                secretKeyRef:  # 调用前面创建的secret密码文件,将密码赋值成为变量使用
                  name: elasticsearch-pw-elastic
                  key: password
            volumeMounts:
            - name: config
              mountPath: /usr/share/kibana/config/kibana.yml
              readOnly: true
              subPath: kibana.yml
          volumes:
          - name: config
            configMap:
              name: kibana-config
    ---
    

    同样直接创建上面的资源清单即可部署:

    $ kubectl apply  -f kibana.configmap.yaml 
                     -f kibana.service.yaml 
                     -f kibana.deployment.yaml
    
    configmap/kibana-config created
    service/kibana created
    deployment.apps/kibana created
    

    部署成功后,可以通过查看 Pod 的日志来了解 Kibana 的状态:

    $ kubectl logs -f -n elastic $(kubectl get pods -n elastic | grep kibana | sed -n 1p | awk '{print $1}') 
         | grep "Status changed from yellow to green"
    
    {"type":"log","@timestamp":"2020-06-26T04:20:38Z","tags":["status","plugin:elasticsearch@7.8.0","info"],"pid":6,"state":"green","message":"Status changed from yellow to green - Ready","prevState":"yellow","prevMsg":"Waiting for Elasticsearch"}
    

    当状态变成 green 后,我们就可以通过 NodePort 端口 30474 去浏览器中访问 Kibana 服务了:

    $ kubectl get svc kibana -n elastic   
    NAME     TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    kibana   NodePort   10.101.121.31   <none>        5601:30474/TCP   8m18s
    

    如下图所示,使用上面我们创建的 Secret 对象的 elastic 用户和生成的密码即可登录:

    img

    登录成功后会自动跳转到 Kibana 首页:

    img

    同样也可以自己创建一个新的超级用户,Management → Stack Management → Create User:

    img

    使用新的用户名和密码,选择 superuser 这个角色来创建新的用户:

    img

    创建成功后就可以使用上面新建的用户登录 Kibana,最后还可以通过 Management → Stack Monitoring 页面查看整个集群的健康状态:

    img

    到这里我们就安装成功了 ElasticSearch 与 Kibana,它们将为我们来存储和可视化我们的应用数据(监控指标、日志和追踪)服务。

    上面我们已经安装配置了 ElasticSearch 的集群,接下来我们将来使用 Metricbeat 对 Kubernetes 集群进行监控。Metricbeat 是一个服务器上的轻量级采集器,用于定期收集主机和服务的监控指标。这也是我们构建 Kubernetes 全栈监控的第一个部分。

    Metribeat 默认采集系统的指标,但是也包含了大量的其他模块来采集有关服务的指标,比如 Nginx、Kafka、MySQL、Redis 等等,支持的完整模块可以在 Elastic 官方网站上查看到 https://www.elastic.co/guide/en/beats/metricbeat/current/metricbeat-modules.html。

    4. kube-state-metrics

    首先,我们需要安装 kube-state-metrics,这个组件是一个监听 Kubernetes API 的服务,可以暴露每个资源对象状态的相关指标数据。

    要安装 kube-state-metrics 也非常简单,在对应的 GitHub 仓库下就有对应的安装资源清单文件:

    $ git clone https://github.com/kubernetes/kube-state-metrics.git
    $ cd kube-state-metrics
    # 执行安装命令
    $ kubectl apply -f examples/standard/  
    clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics configured
    clusterrole.rbac.authorization.k8s.io/kube-state-metrics configured
    deployment.apps/kube-state-metrics configured
    serviceaccount/kube-state-metrics configured
    service/kube-state-metrics configured
    $ kubectl get pods -n kube-system -l app.kubernetes.io/name=kube-state-metrics
    NAME                                  READY   STATUS    RESTARTS   AGE
    kube-state-metrics-6d7449fc78-mgf4f   1/1     Running   0          88s
    

    当 Pod 变成 Running 状态后证明安装成功。

    5. Metricbeat

    由于我们需要监控所有的节点,所以我们需要使用一个 DaemonSet 控制器来安装 Metricbeat。

    首先,使用一个 ConfigMap 来配置 Metricbeat,然后通过 Volume 将该对象挂载到容器中的 /etc/metricbeat.yaml 中去。配置文件中包含了 ElasticSearch 的地址、用户名和密码,以及 Kibana 配置,我们要启用的模块与抓取频率等信息。

    # metricbeat.settings.configmap.yml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: metricbeat-config
      labels:
        app: metricbeat
    data:
      metricbeat.yml: |-
    
        # 模块配置
        metricbeat.modules:
        - module: system
          period: ${PERIOD}  # 设置一个抓取数据的间隔
          metricsets: ["cpu", "load", "memory", "network", "process", "process_summary", "core", "diskio", "socket"]
          processes: ['.*']
          process.include_top_n:
            by_cpu: 5      # 根据 CPU 计算的前5个进程
            by_memory: 5   # 根据内存计算的前5个进程
    
        - module: system
          period: ${PERIOD}
          metricsets:  ["filesystem", "fsstat"]
          processors:
          - drop_event.when.regexp:  # 排除一些系统目录的监控
              system.filesystem.mount_point: '^/(sys|cgroup|proc|dev|etc|host|lib)($|/)'
    
        - module: docker             # 抓取docker应用,但是不支持containerd 
          period: ${PERIOD}
          hosts: ["unix:///var/run/docker.sock"]
          metricsets: ["container", "cpu", "diskio", "healthcheck", "info", "memory", "network"]
    
        - module: kubernetes  # 抓取 kubelet 监控指标
          period: ${PERIOD}
          node: ${NODE_NAME}
          hosts: ["https://${NODE_NAME}:10250"]    # 连接kubelet的监控端口,如果需要监控api-server/controller-manager等其他组件的监控,也需要连接端口
          metricsets: ["node", "system", "pod", "container", "volume"]
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          ssl.verification_mode: "none"
         
        - module: kubernetes  # 抓取 kube-state-metrics 数据
          period: ${PERIOD}
          node: ${NODE_NAME}
          metricsets: ["state_node", "state_deployment", "state_replicaset", "state_pod", "state_container"]
          hosts: ["kube-state-metrics.kube-system.svc.cluster.local:8080"]
    
        # 根据 k8s deployment 配置具体的服务模块mongo
        metricbeat.autodiscover:
          providers:
          - type: kubernetes
            node: ${NODE_NAME}
            templates:
            - condition.equals:
                kubernetes.labels.app: mongo
              config:
              - module: mongodb
                period: ${PERIOD}
                hosts: ["mongo.elastic:27017"]
                metricsets: ["dbstats", "status", "collstats", "metrics", "replstatus"]
    
        # ElasticSearch 连接配置
        output.elasticsearch:
          hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
          username: ${ELASTICSEARCH_USERNAME}
          password: ${ELASTICSEARCH_PASSWORD}
    
        # 连接到 Kibana
        setup.kibana:
          host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
    
        # 导入已经存在的 Dashboard
        setup.dashboards.enabled: true
    
        # 配置 indice 生命周期
        setup.ilm:
          policy_file: /etc/indice-lifecycle.json
    ---
    

    ElasticSearch 的 indice 生命周期表示一组规则,可以根据 indice 的大小或者时长应用到你的 indice 上。比如可以每天或者每次超过 1GB 大小的时候对 indice 进行轮转,我们也可以根据规则配置不同的阶段。由于监控会产生大量的数据,很有可能一天就超过几十G的数据,所以为了防止大量的数据存储,我们可以利用 indice 的生命周期来配置数据保留,这个在 Prometheus 中也有类似的操作。 如下所示的文件中,我们配置成每天或每次超过5GB的时候就对 indice 进行轮转,并删除所有超过10天的 indice 文件,我们这里只保留10天监控数据完全足够了。

    # metricbeat.indice-lifecycle.configmap.yml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: metricbeat-indice-lifecycle
      labels:
        app: metricbeat
    data:
      indice-lifecycle.json: |-
        {
          "policy": {
            "phases": {
              "hot": {
                "actions": {
                  "rollover": {
                    "max_size": "5GB" ,
                    "max_age": "1d"
                  }
                }
              },
              "delete": {
                "min_age": "10d",
                "actions": {
                  "delete": {}
                }
              }
            }
          }
        }
    ---
    

    接下来就可以来编写 Metricbeat 的 DaemonSet 资源对象清单,如下所示:

    # metricbeat.daemonset.yml
    ---
    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      namespace: elastic
      name: metricbeat
      labels:
        app: metricbeat
    spec:
      selector:
        matchLabels:
          app: metricbeat
      template:
        metadata:
          labels:
            app: metricbeat
        spec:
          serviceAccountName: metricbeat
          terminationGracePeriodSeconds: 30
          hostNetwork: true
          dnsPolicy: ClusterFirstWithHostNet
          containers:
          - name: metricbeat
            image: docker.elastic.co/beats/metricbeat:7.8.0
            args: [
              "-c", "/etc/metricbeat.yml",
              "-e", "-system.hostfs=/hostfs"
            ]
            env:
            - name: ELASTICSEARCH_HOST
              value: elasticsearch-client.elastic.svc.cluster.local
            - name: ELASTICSEARCH_PORT
              value: "9200"
            - name: ELASTICSEARCH_USERNAME
              value: elastic
            - name: ELASTICSEARCH_PASSWORD
              valueFrom:
                secretKeyRef:    # 调用前面创建的secret密码文件
                  name: elasticsearch-pw-elastic
                  key: password
            - name: KIBANA_HOST
              value: kibana.elastic.svc.cluster.local
            - name: KIBANA_PORT
              value: "5601"
            - name: NODE_NAME
              valueFrom:
                fieldRef:
                  fieldPath: spec.nodeName
            - name: PERIOD
              value: "10s"
            securityContext:
              runAsUser: 0
            resources:
              limits:
                memory: 200Mi
              requests:
                cpu: 100m
                memory: 100Mi
            volumeMounts:
            - name: config
              mountPath: /etc/metricbeat.yml
              readOnly: true
              subPath: metricbeat.yml
            - name: indice-lifecycle
              mountPath: /etc/indice-lifecycle.json
              readOnly: true
              subPath: indice-lifecycle.json
            - name: dockersock
              mountPath: /var/run/docker.sock
            - name: proc
              mountPath: /hostfs/proc
              readOnly: true
            - name: cgroup
              mountPath: /hostfs/sys/fs/cgroup
              readOnly: true
          volumes:
          - name: proc
            hostPath:
              path: /proc
          - name: cgroup
            hostPath:
              path: /sys/fs/cgroup
          - name: dockersock
            hostPath:
              path: /var/run/docker.sock
          - name: config
            configMap:
              defaultMode: 0600
              name: metricbeat-config
          - name: indice-lifecycle
            configMap:
              defaultMode: 0600
              name: metricbeat-indice-lifecycle
          - name: data
            hostPath:
              path: /var/lib/metricbeat-data
              type: DirectoryOrCreate
    ---
    

    需要注意的将上面的两个 ConfigMap 挂载到容器中去,由于需要 Metricbeat 获取宿主机的相关信息,所以我们这里也挂载了一些宿主机的文件到容器中去,比如 proc 目录,cgroup 目录以及 dockersock 文件。

    由于 Metricbeat 需要去获取 Kubernetes 集群的资源对象信息,所以同样需要对应的 RBAC 权限声明,由于是全局作用域的,所以这里我们使用 ClusterRole 进行声明:

    # metricbeat.permissions.yml
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRoleBinding
    metadata:
      name: metricbeat
    subjects:
    - kind: ServiceAccount
      name: metricbeat
      namespace: elastic
    roleRef:
      kind: ClusterRole
      name: metricbeat
      apiGroup: rbac.authorization.k8s.io
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRole
    metadata:
      name: metricbeat
      labels:
        app: metricbeat
    rules:
    - apiGroups: [""]
      resources:
      - nodes
      - namespaces
      - events
      - pods
      verbs: ["get", "list", "watch"]
    - apiGroups: ["extensions"]
      resources:
      - replicasets
      verbs: ["get", "list", "watch"]
    - apiGroups: ["apps"]
      resources:
      - statefulsets
      - deployments
    	- replicasets
      verbs: ["get", "list", "watch"]
    - apiGroups:
      - ""
      resources:
      - nodes/stats
      verbs:
      - get
    ---
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      namespace: elastic
      name: metricbeat
      labels:
        app: metricbeat
    ---
    

    直接创建上面的几个资源对象即可:

    $ kubectl apply  -f metricbeat.settings.configmap.yml 
                     -f metricbeat.indice-lifecycle.configmap.yml 
                     -f metricbeat.daemonset.yml 
                     -f metricbeat.permissions.yml
    
    configmap/metricbeat-config configured
    configmap/metricbeat-indice-lifecycle configured
    daemonset.extensions/metricbeat created
    clusterrolebinding.rbac.authorization.k8s.io/metricbeat created
    clusterrole.rbac.authorization.k8s.io/metricbeat created
    serviceaccount/metricbeat created
    $ kubectl get pods -n elastic -l app=metricbeat   
    NAME               READY   STATUS    RESTARTS   AGE
    metricbeat-2gstq   1/1     Running   0          18m
    metricbeat-99rdb   1/1     Running   0          18m
    metricbeat-9bb27   1/1     Running   0          18m
    metricbeat-cgbrg   1/1     Running   0          18m
    metricbeat-l2csd   1/1     Running   0          18m
    metricbeat-lsrgv   1/1     Running   0          18m
    

    当 Metricbeat 的 Pod 变成 Running 状态后,正常我们就可以在 Kibana 中去查看对应的监控信息了。

    在 Kibana 左侧页面 Observability → Metrics 进入指标监控页面,正常就可以看到一些监控数据了:

    img

    也可以根据自己的需求进行筛选,比如我们可以按照 Kubernetes Namespace 进行分组作为视图查看监控信息:

    img

    由于我们在配置文件中设置了属性 setup.dashboards.enabled=true,所以 Kibana 会导入预先已经存在的一些 Dashboard。我们可以在左侧菜单进入 Kibana → Dashboard 页面,我们会看到一个大约有 50 个 Metricbeat 的 Dashboard 列表,我们可以根据需要筛选 Dashboard,比如我们要查看集群节点的信息,可以查看 [Metricbeat Kubernetes] Overview ECS 这个 Dashboard:

    img

    我们还单独启用了 mongodb 模块,我们可以使用 [Metricbeat MongoDB] Overview ECS 这个 Dashboard 来查看监控信息:

    img

    我们还启用了 docker 这个模块,也可以使用 [Metricbeat Docker] Overview ECS 这个 Dashboard 来查看监控信息:

    img

    到这里我们就完成了使用 Metricbeat 来监控 Kubernetes 集群信息,在下面我们学习如何使用 Filebeat 来收集日志以监控 Kubernetes 集群。

    6. Filebeat

    我们将要安装配置 Filebeat 来收集 Kubernetes 集群中的日志数据,然后发送到 ElasticSearch 去中,Filebeat 是一个轻量级的日志采集代理,还可以配置特定的模块来解析和可视化应用(比如数据库、Nginx 等)的日志格式。

    和 Metricbeat 类似,Filebeat 也需要一个配置文件来设置和 ElasticSearch 的链接信息、和 Kibana 的连接已经日志采集和解析的方式。

    如下所示的 ConfigMap 资源对象就是我们这里用于日志采集的配置信息(可以从官方网站上获取完整的可配置信息):

    # filebeat.settings.configmap.yml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: filebeat-config
      labels:
        app: filebeat
    data:
      filebeat.yml: |-
        filebeat.inputs:
        - type: container
          enabled: true
          paths:
          - /var/log/containers/*.log
          processors:
          - add_kubernetes_metadata:
              in_cluster: true
              host: ${NODE_NAME}
              matchers:
              - logs_path:
                  logs_path: "/var/log/containers/"
        
        filebeat.autodiscover:
          providers:
            - type: kubernetes
              templates:
                - condition.equals:
                    kubernetes.labels.app: mongo
                  config:
                    - module: mongodb
                      enabled: true
                      log:
                        input:
                          type: docker
                          containers.ids:
                            - ${data.kubernetes.container.id}
    
        processors:
          - drop_event:
              when.or:
                  - and:
                      - regexp:
                          message: '^d+.d+.d+.d+ '
                      - equals:
                          fileset.name: error
                  - and:
                      - not:
                          regexp:
                              message: '^d+.d+.d+.d+ '
                      - equals:
                          fileset.name: access
          - add_cloud_metadata:
          - add_kubernetes_metadata:
              matchers:
              - logs_path:
                  logs_path: "/var/log/containers/"
          - add_docker_metadata:
    
        output.elasticsearch:
          hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
          username: ${ELASTICSEARCH_USERNAME}
          password: ${ELASTICSEARCH_PASSWORD}
    
        setup.kibana:
          host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
    
        setup.dashboards.enabled: true
        setup.template.enabled: true
    
        setup.ilm:
          policy_file: /etc/indice-lifecycle.json
    ---
    

    我们配置采集 /var/log/containers/ 下面的所有日志数据,并且使用 inCluster 的模式访问 Kubernetes 的 APIServer,获取日志数据的 Meta 信息,将日志直接发送到 Elasticsearch。

    此外还通过 policy_file 定义了 indice 的回收策略:

    # filebeat.indice-lifecycle.configmap.yml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: filebeat-indice-lifecycle
      labels:
        app: filebeat
    data:
      indice-lifecycle.json: |-
        {
          "policy": {
            "phases": {
              "hot": {
                "actions": {
                  "rollover": {
                    "max_size": "5GB" ,
                    "max_age": "1d"
                  }
                }
              },
              "delete": {
                "min_age": "30d",
                "actions": {
                  "delete": {}
                }
              }
            }
          }
        }
    ---
    

    同样为了采集每个节点上的日志数据,我们这里使用一个 DaemonSet 控制器,使用上面的配置来采集节点的日志。

    #filebeat.daemonset.yml
    ---
    apiVersion: apps/v1
    kind: DaemonSet
    metadata:
      namespace: elastic
      name: filebeat
      labels:
        app: filebeat
    spec:
      selector:
        matchLabels:
          app: filebeat
      template:
        metadata:
          labels:
            app: filebeat
        spec:
          serviceAccountName: filebeat
          terminationGracePeriodSeconds: 30
          containers:
          - name: filebeat
            image: docker.elastic.co/beats/filebeat:7.8.0
            args: [
              "-c", "/etc/filebeat.yml",
              "-e",
            ]
            env:
            - name: ELASTICSEARCH_HOST
              value: elasticsearch-client.elastic.svc.cluster.local
            - name: ELASTICSEARCH_PORT
              value: "9200"
            - name: ELASTICSEARCH_USERNAME
              value: elastic
            - name: ELASTICSEARCH_PASSWORD
              valueFrom:
                secretKeyRef:
                  name: elasticsearch-pw-elastic
                  key: password
            - name: KIBANA_HOST
              value: kibana.elastic.svc.cluster.local
            - name: KIBANA_PORT
              value: "5601"
            - name: NODE_NAME
              valueFrom:
                fieldRef:
                  fieldPath: spec.nodeName
            securityContext:
              runAsUser: 0
            resources:
              limits:
                memory: 200Mi
              requests:
                cpu: 100m
                memory: 100Mi
            volumeMounts:
            - name: config
              mountPath: /etc/filebeat.yml
              readOnly: true
              subPath: filebeat.yml
            - name: filebeat-indice-lifecycle
              mountPath: /etc/indice-lifecycle.json
              readOnly: true
              subPath: indice-lifecycle.json
            - name: data
              mountPath: /usr/share/filebeat/data
            - name: varlog
              mountPath: /var/log
              readOnly: true
            - name: varlibdockercontainers
              mountPath: /var/lib/docker/containers
              readOnly: true
            - name: dockersock
              mountPath: /var/run/docker.sock
          volumes:
          - name: config
            configMap:
              defaultMode: 0600
              name: filebeat-config
          - name: filebeat-indice-lifecycle
            configMap:
              defaultMode: 0600
              name: filebeat-indice-lifecycle
          - name: varlog
            hostPath:
              path: /var/log
          - name: varlibdockercontainers
            hostPath:
              path: /var/lib/docker/containers
          - name: dockersock
            hostPath:
              path: /var/run/docker.sock
          - name: data
            hostPath:
              path: /var/lib/filebeat-data
              type: DirectoryOrCreate
    ---
    

    我们这里使用的是 Kubeadm 搭建的集群,默认 Master 节点是有污点的,所以如果还想采集 Master 节点的日志,还必须加上对应的容忍,我这里不采集就没有添加容忍了。 此外由于需要获取日志在 Kubernetes 集群中的 Meta 信息,比如 Pod 名称、所在的命名空间等,所以 Filebeat 需要访问 APIServer,自然就需要对应的 RBAC 权限了,所以还需要进行权限声明:

    # filebeat.permission.yml
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRoleBinding
    metadata:
      name: filebeat
    subjects:
    - kind: ServiceAccount
      name: filebeat
      namespace: elastic
    roleRef:
      kind: ClusterRole
      name: filebeat
      apiGroup: rbac.authorization.k8s.io
    ---
    apiVersion: rbac.authorization.k8s.io/v1beta1
    kind: ClusterRole
    metadata:
      name: filebeat
      labels:
        app: filebeat
    rules:
    - apiGroups: [""]
      resources:
      - namespaces
      - pods
      verbs:
      - get
      - watch
      - list
    ---
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      namespace: elastic
      name: filebeat
      labels:
        app: filebeat
    ---
    

    然后直接安装部署上面的几个资源对象即可:

    $ kubectl apply  -f filebeat.settings.configmap.yml 
                     -f filebeat.indice-lifecycle.configmap.yml 
                     -f filebeat.daemonset.yml 
                     -f filebeat.permissions.yml 
    
    configmap/filebeat-config created
    configmap/filebeat-indice-lifecycle created
    daemonset.apps/filebeat created
    clusterrolebinding.rbac.authorization.k8s.io/filebeat created
    clusterrole.rbac.authorization.k8s.io/filebeat created
    serviceaccount/filebeat created
    

    当所有的 Filebeat 和 Logstash 的 Pod 都变成 Running 状态后,证明部署完成。现在我们就可以进入到 Kibana 页面中去查看日志了。左侧菜单 Observability → Logs

    img

    此外还可以从上节我们提到的 Metrics 页面进入查看 Pod 的日志:

    img

    点击 Kubernetes Pod logs 获取需要查看的 Pod 日志:

    img

    如果集群中要采集的日志数据量太大,直接将数据发送给 ElasticSearch,对 ES 压力比较大,这种情况一般可以加一个类似于 Kafka 这样的中间件来缓冲下,或者通过 Logstash 来收集 Filebeat 的日志。

    这里我们就完成了使用 Filebeat 采集 Kubernetes 集群的日志,在下篇文章中,我们继续学习如何使用 Elastic APM 来追踪 Kubernetes 集群应用。

    7. Elastic APM

    Elastic APM 是 Elastic Stack 上用于应用性能监控的工具,它允许我们通过收集传入请求、数据库查询、缓存调用等方式来实时监控应用性能。这可以让我们更加轻松快速定位性能问题。

    Elastic APM 是兼容 OpenTracing 的,所以我们可以使用大量现有的库来跟踪应用程序性能。

    比如我们可以在一个分布式环境(微服务架构)中跟踪一个请求,并轻松找到可能潜在的性能瓶颈。

    img

    Elastic APM 通过一个名为 APM-Server 的组件提供服务,用于收集并向 ElasticSearch 以及和应用一起运行的 agent 程序发送追踪数据。

    img

    安装 APM-Server

    首先我们需要在 Kubernetes 集群上安装 APM-Server 来收集 agent 的追踪数据,并转发给 ElasticSearch,这里同样我们使用一个 ConfigMap 来配置:

    # apm.configmap.yml
    ---
    apiVersion: v1
    kind: ConfigMap
    metadata:
      namespace: elastic
      name: apm-server-config
      labels:
        app: apm-server
    data:
      apm-server.yml: |-
        apm-server:
          host: "0.0.0.0:8200"
    
        output.elasticsearch:
          hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
          username: ${ELASTICSEARCH_USERNAME}
          password: ${ELASTICSEARCH_PASSWORD}
    
        setup.kibana:
          host: '${KIBANA_HOST:kibana}:${KIBANA_PORT:5601}'
    ---
    

    APM-Server 需要暴露 8200 端口来让 agent 转发他们的追踪数据,新建一个对应的 Service 对象即可:

    # apm.service.yml
    ---
    apiVersion: v1
    kind: Service
    metadata:
      namespace: elastic
      name: apm-server
      labels:
        app: apm-server
    spec:
      ports:
      - port: 8200
        name: apm-server
      selector:
        app: apm-server
    ---
    

    然后使用一个 Deployment 资源对象管理即可:

    # apm.deployment.yml
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: apm-server
      labels:
        app: apm-server
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: apm-server
      template:
        metadata:
          labels:
            app: apm-server
        spec:
          containers:
          - name: apm-server
            image: docker.elastic.co/apm/apm-server:7.8.0
            env:
            - name: ELASTICSEARCH_HOST
              value: elasticsearch-client.elastic.svc.cluster.local
            - name: ELASTICSEARCH_PORT
              value: "9200"
            - name: ELASTICSEARCH_USERNAME
              value: elastic
            - name: ELASTICSEARCH_PASSWORD
              valueFrom:
                secretKeyRef:
                  name: elasticsearch-pw-elastic
                  key: password
            - name: KIBANA_HOST
              value: kibana.elastic.svc.cluster.local
            - name: KIBANA_PORT
              value: "5601"
            ports:
            - containerPort: 8200
              name: apm-server
            volumeMounts:
            - name: config
              mountPath: /usr/share/apm-server/apm-server.yml
              readOnly: true
              subPath: apm-server.yml
          volumes:
          - name: config
            configMap:
              name: apm-server-config
    ---
    

    直接部署上面的几个资源对象:

    $ kubectl apply  -f apm.configmap.yml 
                     -f apm.service.yml 
                     -f apm.deployment.yml
    
    configmap/apm-server-config created
    service/apm-server created
    deployment.extensions/apm-server created
    

    当 Pod 处于 Running 状态证明运行成功:

    $ kubectl get pods -n elastic -l app=apm-server
    NAME                          READY   STATUS    RESTARTS   AGE
    apm-server-667bfc5cff-zj8nq   1/1     Running   0          12m
    

    接下来我们可以在第一节中部署的 Spring-Boot 应用上安装一个 agent 应用。

    配置 Java Agent

    接下来我们在示例应用程序 spring-boot-simple 上配置一个 Elastic APM Java agent。 首先我们需要把 elastic-apm-agent-1.8.0.jar 这个 jar 包程序内置到应用容器中去,在构建镜像的 Dockerfile 文件中添加一行如下所示的命令直接下载该 JAR 包即可:

    RUN wget -O /apm-agent.jar https://search.maven.org/remotecontent?filepath=co/elastic/apm/elastic-apm-agent/1.8.0/elastic-apm-agent-1.8.0.jar
    

    完整的 Dockerfile 文件如下所示:

    FROM openjdk:8-jdk-alpine
    
    ENV ELASTIC_APM_VERSION "1.8.0"
    RUN wget -O /apm-agent.jar https://search.maven.org/remotecontent?filepath=co/elastic/apm/elastic-apm-agent/$ELASTIC_APM_VERSION/elastic-apm-agent-$ELASTIC_APM_VERSION.jar
    
    COPY target/spring-boot-simple.jar /app.jar
    
    CMD java -jar /app.jar
    

    然后需要在示例应用中添加上如下依赖关系,这样我们就可以集成 open-tracing 的依赖库或者使用 Elastic APM API 手动检测。

    <dependency>
        <groupId>co.elastic.apm</groupId>
        <artifactId>apm-agent-api</artifactId>
        <version>${elastic-apm.version}</version>
    </dependency>
    <dependency>
        <groupId>co.elastic.apm</groupId>
        <artifactId>apm-opentracing</artifactId>
        <version>${elastic-apm.version}</version>
    </dependency>
    <dependency>
        <groupId>io.opentracing.contrib</groupId>
        <artifactId>opentracing-spring-cloud-mongo-starter</artifactId>
        <version>${opentracing-spring-cloud.version}</version>
    </dependency>
    

    然后需要修改第一篇文章中使用 Deployment 部署的 Spring-Boot 应用,需要开启 Java agent 并且要连接到 APM-Server。

    # spring-boot-simple.deployment.yml
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: elastic
      name: spring-boot-simple
      labels:
        app: spring-boot-simple
    spec:
      selector:
        matchLabels:
          app: spring-boot-simple
      template:
        metadata:
          labels:
            app: spring-boot-simple
        spec:
          containers:
          - image: cnych/spring-boot-simple:0.0.1-SNAPSHOT
            imagePullPolicy: Always
            name: spring-boot-simple
            command:
              - "java"
              - "-javaagent:/apm-agent.jar"
              - "-Delastic.apm.active=$(ELASTIC_APM_ACTIVE)"
              - "-Delastic.apm.server_urls=$(ELASTIC_APM_SERVER)"
              - "-Delastic.apm.service_name=spring-boot-simple"
              - "-jar"
              - "app.jar"
            env:
              - name: SPRING_DATA_MONGODB_HOST
                value: mongo
              - name: ELASTIC_APM_ACTIVE
                value: "true"
              - name: ELASTIC_APM_SERVER
                value: http://apm-server.elastic.svc.cluster.local:8200
            ports:
            - containerPort: 8080
    ---
    

    然后重新部署上面的示例应用:

    $ kubectl apply -f spring-boot-simple.yml
    $ kubectl get pods -n elastic -l app=spring-boot-simple
    NAME                                 READY   STATUS    RESTARTS   AGE
    spring-boot-simple-fb5564885-tf68d   1/1     Running   0          5m11s
    $ kubectl get svc -n elastic -l app=spring-boot-simple
    NAME                 TYPE       CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
    spring-boot-simple   NodePort   10.109.55.134   <none>        8080:31847/TCP   9d
    

    当示例应用重新部署完成后,执行如下几个请求:

    get messages

    获取所有发布的 messages 数据:

    $ curl -X GET http://k8s.qikqiak.com:31847/message
    

    get messages (慢请求)

    使用 sleep=<ms> 来模拟慢请求:

    $ curl -X GET http://k8s.qikqiak.com:31847/message?sleep=3000
    

    get messages (error)

    使用 error=true 来触发一异常:

    $ curl -X GET http://k8s.qikqiak.com:31847/message?error=true
    

    现在我们去到 Kibana 页面中路由到 APM 页面,我们应该就可以看到 spring-boot-simple 应用的数据了。

    img

    点击应用就可以查看到当前应用的各种性能追踪数据:

    img

    可以查看现在的错误数据:

    img

    还可以查看 JVM 的监控数据:

    https://bxdc-static.oss-cn-beijing.aliyuncs.com/images/20200706093331.png

    除此之外,我们还可以添加报警信息,就可以在第一时间掌握应用的性能状况了。

    总结

    到这里我们就完成了使用 Elastic Stack 进行 Kubernetes 环境的全栈监控,通过监控指标、日志、性能追踪来了解我们的应用各方面运行情况,加快我们排查和解决各种问题。

    问题排错

    1. 关于kibana调取secret密码时,登入kibana内查看密码变量发现变量是一个乱码值,这个目前只在变量挂入kibana容器中发现。

      解决办法:将容器变量调用设置成密码
      
    2. es 自动生成索引时,使用索引模板,生成默认tag 过多,可以通过修改索引模板的方法来进行减少索引建立

  • 相关阅读:
    Spring常见面试题
    Mybatis常见面试题
    SQLSERVER查询整个数据库中某个特定值所在的表和字段的方法
    四款常见数据库比较同步软件汇总
    SQL Server常用函数整理
    比较经典的SQL面试题
    sqlserver查询数据库中有多少个表
    数据库设计三大范式
    MS SQL SERVER导出表结构到Excel
    flask-vue 解决跨域问题
  • 原文地址:https://www.cnblogs.com/passzhang/p/13403624.html
Copyright © 2011-2022 走看看