zoukankan      html  css  js  c++  java
  • hdu 5305 Friends(dfs)

    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements. 
     
    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases. 

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once. 
     
    Output
    For each testcase, print one number indicating the answer.
     
    Sample Input
    2
    3 3
    1 2
    2 3
    3 1
    4 4
    1 2
    2 3
    3 4
    4 1
     
    Sample Output
    0
    2
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<cmath>
     5 using namespace std;
     6 int ans,n,m;
     7 int v[10],v1[10],v2[10];
     8 struct p
     9 {
    10    int u,v;
    11 };p s[60];
    12 void dfs(int i)
    13 {
    14      if (i==m+1)
    15      {
    16          ans++;
    17          return ;
    18      }
    19      if (v1[s[i].u]&&v1[s[i].v])
    20      {
    21           v1[s[i].u]--;
    22           v1[s[i].v]--;
    23           dfs(i+1);
    24           v1[s[i].u]++;
    25           v1[s[i].v]++;
    26      }
    27      if (v2[s[i].u]&&v2[s[i].v])
    28      {
    29           v2[s[i].u]--;
    30           v2[s[i].v]--;
    31           dfs(i+1);
    32           v2[s[i].u]++;
    33           v2[s[i].v]++;
    34      }
    35 }
    36 int main()
    37 {
    38     int i,j,flag,t;
    39     scanf("%d",&t);
    40     while (t--)
    41     {
    42         scanf("%d%d",&n,&m);
    43         flag=0;
    44         memset(v,0,sizeof(v));
    45         memset(v1,0,sizeof(v1));
    46         memset(v2,0,sizeof(v2));
    47         for (i=1;i<=m;i++)
    48         {
    49            scanf("%d%d",&s[i].u,&s[i].v);
    50            v[s[i].u]++;
    51            v[s[i].v]++;
    52         }
    53         for (i=1;i<=n;i++)
    54         {
    55            if (v[i]%2==1)
    56            {
    57               flag=1;
    58               break;
    59            }
    60            v1[i]=v2[i]=v[i]/2;
    61         }
    62         ans=0;
    63         dfs(1);
    64         printf("%d
    ",ans);
    65     }
    66 }
  • 相关阅读:
    solr 最佳实践
    DNS 域名解析过程
    mac 下 virtualbox 配置全网通
    搜索引擎使用技巧
    三叉搜索树
    双数组trie树的基本构造及简单优化
    基于回归-马尔科夫模型的客运量预测
    solr 常用命令
    PHP yield 分析,以及协程的实现,超详细版(上)
    C语言,简单计算器【上】
  • 原文地址:https://www.cnblogs.com/pblr/p/4810230.html
Copyright © 2011-2022 走看看