zoukankan      html  css  js  c++  java
  • hdu 5305 Friends(dfs)

    Problem Description
    There are n people and m pairs of friends. For every pair of friends, they can choose to become online friends (communicating using online applications) or offline friends (mostly using face-to-face communication). However, everyone in these n people wants to have the same number of online and offline friends (i.e. If one person has x onine friends, he or she must have x offline friends too, but different people can have different number of online or offline friends). Please determine how many ways there are to satisfy their requirements. 
     
    Input
    The first line of the input is a single integer T (T=100), indicating the number of testcases. 

    For each testcase, the first line contains two integers n (1n8) and m (0mn(n1)2), indicating the number of people and the number of pairs of friends, respectively. Each of the next m lines contains two numbers x and y, which mean x and y are friends. It is guaranteed that xy and every friend relationship will appear at most once. 
     
    Output
    For each testcase, print one number indicating the answer.
     
    Sample Input
    2
    3 3
    1 2
    2 3
    3 1
    4 4
    1 2
    2 3
    3 4
    4 1
     
    Sample Output
    0
    2
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<cmath>
     5 using namespace std;
     6 int ans,n,m;
     7 int v[10],v1[10],v2[10];
     8 struct p
     9 {
    10    int u,v;
    11 };p s[60];
    12 void dfs(int i)
    13 {
    14      if (i==m+1)
    15      {
    16          ans++;
    17          return ;
    18      }
    19      if (v1[s[i].u]&&v1[s[i].v])
    20      {
    21           v1[s[i].u]--;
    22           v1[s[i].v]--;
    23           dfs(i+1);
    24           v1[s[i].u]++;
    25           v1[s[i].v]++;
    26      }
    27      if (v2[s[i].u]&&v2[s[i].v])
    28      {
    29           v2[s[i].u]--;
    30           v2[s[i].v]--;
    31           dfs(i+1);
    32           v2[s[i].u]++;
    33           v2[s[i].v]++;
    34      }
    35 }
    36 int main()
    37 {
    38     int i,j,flag,t;
    39     scanf("%d",&t);
    40     while (t--)
    41     {
    42         scanf("%d%d",&n,&m);
    43         flag=0;
    44         memset(v,0,sizeof(v));
    45         memset(v1,0,sizeof(v1));
    46         memset(v2,0,sizeof(v2));
    47         for (i=1;i<=m;i++)
    48         {
    49            scanf("%d%d",&s[i].u,&s[i].v);
    50            v[s[i].u]++;
    51            v[s[i].v]++;
    52         }
    53         for (i=1;i<=n;i++)
    54         {
    55            if (v[i]%2==1)
    56            {
    57               flag=1;
    58               break;
    59            }
    60            v1[i]=v2[i]=v[i]/2;
    61         }
    62         ans=0;
    63         dfs(1);
    64         printf("%d
    ",ans);
    65     }
    66 }
  • 相关阅读:
    javascript面向对象程序设计之浅谈2
    Sphinx学习之sphinx的安装篇
    IT人的职业生涯规划
    perconatoolkit系列之系统类工具的使用
    perconatoolkit系列之实用类工具使用
    查询ip归属地的shell脚本
    使用mysqlsla分析Mysql数据库日志
    MYSQL管理之主从同步管理
    MYSQL数据库管理之权限管理
    perconatoolkit系列之复制类工具使用
  • 原文地址:https://www.cnblogs.com/pblr/p/4810230.html
Copyright © 2011-2022 走看看