康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩。
康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!
其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n
a[i] 实际意义就是: 设一串数字中第n个数为s[n], a[i]表示第n个数之后的数比s[n]小的数的个数。 看以下例子,便于理解举例:
例如,3 5 7 4 1 2 9 6 8 展开为 98884。因为X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.
解释:
排列的第一位是3,比3小的数有两个,以这样的数开始的排列有8!个,因此第一项为2*8!
排列的第二位是5,比5小的数有1、2、3、4,由于3已经出现,因此共有3个比5小的数,这样的排列有7!个,因此第二项为3*7!
以此类推,直至0*0!
用途:显然,n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出对应的全排列。
总之就是用来压缩空间的。。
const int PermSize = 12; long long factory[PermSize] = { 0, 1, 2, 6, 24, 120,720, 5040, 40320, 362880, 3628800,39916800 }; long long Cantor(string buf) { int i, j, counted; long long result = 0; for (i = 0; i < PermSize; ++i) { counted = 0; for(j = i + 1; j < PermSize; ++j) if(buf[i] > buf[j]) ++counted; result = result + counted *factory[PermSize - i - 1]; } return result; }
康托展开的逆运算:
康托展开的公式是 X=an*(n-1)!+an-1*(n-2)!+...+ai*(i-1)!+...+a2*1!+a1*0! 其中,ai为当前未出现的元素中是排在第几个(从0开始)。
这个公式可能看着让人头大,最好举个例子来说明一下。例如,有一个数组 s = ["A", "B", "C", "D"],它的一个排列 s1 = ["D", "B", "A", "C"],现在要把 s1 映射成 X。n 指的是数组的长度,也就是4,所以
X(s1) = a4*3! + a3*2! + a2*1! + a1*0!
关键问题是 a4、a3、a2 和 a1 等于啥?
a4 = "D" 这个元素在子数组 ["D", "B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,"D"是第3大的元素,所以 a4 = 3。
a3 = "B" 这个元素在子数组 ["B", "A", "C"] 中是第几大的元素。"A"是第0大的元素,"B"是第1大的元素,"C" 是第2大的元素,所以 a3 = 1。
a2 = "A" 这个元素在子数组 ["A", "C"] 中是第几大的元素。"A"是第0大的元素,"C"是第1大的元素,所以 a2 = 0。
a1 = "C" 这个元素在子数组 ["C"] 中是第几大的元素。"C" 是第0大的元素,所以 a1 = 0。(因为子数组只有1个元素,所以a1总是为0)
所以,X(s1) = 3*3! + 1*2! + 0*1! + 0*0! = 20
A B C | 0
A C B | 1
B A C | 2
B C A | 3
C A B | 4
C B A | 5
通过康托逆展开生成全排列
如果已知 s = ["A", "B", "C", "D"],X(s1) = 20,能否推出 s1 = ["D", "B", "A", "C"] 呢?
因为已知 X(s1) = a4*3! + a3*2! + a2*1! + a1*0! = 20,所以问题变成由 20 能否唯一地映射出一组 a4、a3、a2、a1?如果不考虑 ai 的取值范围,有
3*3! + 1*2! + 0*1! + 0*0! = 20
2*3! + 4*2! + 0*1! + 0*0! = 20
1*3! + 7*2! + 0*1! + 0*0! = 20
0*3! + 10*2! + 0*1! + 0*0! = 20
0*3! + 0*2! + 20*1! + 0*0! = 20
等等。但是满足 0 <= ai <= n-1 的只有第一组。可以使用辗转相除的方法得到 ai,如下图所示:
知道了a4、a3、a2、a1的值,就可以知道s1[0] 是子数组["A", "B", "C", "D"]中第3大的元素 "D",s1[1] 是子数组 ["A", "B", "C"] 中第1大的元素"B",s1[2] 是子数组 ["A", "C"] 中第0大的元素"A",s[3] 是子数组 ["C"] 中第0大的元素"C",所以s1 = ["D", "B", "A", "C"]。