zoukankan      html  css  js  c++  java
  • 前向传播(张量)TensorFlow2.0

    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import datasets
    import os
    
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    
    """ 加载数据集
        x: (60000, 28, 28)
        y: (60000,)
    """
    (x, y), _ = datasets.mnist.load_data()
    
    # 
    x = tf.convert_to_tensor(x, dtype=tf.float32) / 255. # 数据在0~1更利于tf优化
    y = tf.convert_to_tensor(y, dtype=tf.int32)
    
    # x、y的范围:
    # tf.reduce_min(x), tf.reduce_max(x)
    # Out[7]: 
    # (<tf.Tensor: id=33, shape=(), dtype=float32, numpy=0.0>,
    #  <tf.Tensor: id=35, shape=(), dtype=float32, numpy=1.0>)
    # tf.reduce_min(y), tf.reduce_max(y)
    # Out[8]: 
    # (<tf.Tensor: id=20, shape=(), dtype=uint8, numpy=0>,
    # <tf.Tensor: id=27, shape=(), dtype=uint8, numpy=9>)
    
    """ 创建数据集 """
    # 这样就可以一次取一个batch
    train_db = tf.data.Dataset.from_tensor_slices((x,y)).batch(128)
    train_iter = iter(train_db)  # 迭代器
    sample = next(train_iter)
    
    # sample[0].shape, sample[1].shape
    # Out[13]: (TensorShape([128, 28, 28]), TensorShape([128]))
    
    # [b, 784] => [b, 256] => [b, 128] => [b, 10]
    # w: [dim_in, dim_out], b: [dim_out]
    ''' 若不用tf.Variable包装,则为tf.tensor类型,tf.GradientTape不会跟踪 
        在这个问题里不设置stddev会出现loss的值为nan的情况,即梯度爆炸'''
    
    w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
    b1 = tf.Variable(tf.zeros([256]))
    w2 = tf.Variable(tf.random.truncated_normal([256, 128], stddev=0.1))
    b2 = tf.Variable(tf.zeros([128]))
    w3 = tf.Variable(tf.random.truncated_normal([128, 10], stddev=0.1))
    b3 = tf.Variable(tf.zeros([10]))
    
    lr = 1e-3
    
    for epoch in range(10):
        for step, (x, y) in enumerate(train_db): # for every batch
            # x:[128, 28, 28]
            # y: [128]
        
            # [b, 28, 28] => [b, 28*28]
            x = tf.reshape(x, [-1, 28*28])
            '''
            tf.GradientTape默认只会跟踪tf.Variable类型的梯度信息,用tf.tensor
            计算出来的grad是None'''
            with tf.GradientTape() as tape: 
                # x: [b, 28*28]
                # h1 = x@w1 + b1
                # [b, 784]@[784, 256] + [256] => [b, 256] + [256] => [b, 256] + [b, 256]
                # TensorFlow会自动完成张量扩张tf.broadcast_to()
                h1 = x@w1 + tf.broadcast_to(b1, [x.shape[0], 256])
                h1 = tf.nn.relu(h1)
                # [b, 256] => [b, 128]
                h2 = h1@w2 + b2
                h2 = tf.nn.relu(h2)
                # [b, 128] => [b, 10]
                out = h2@w3 + b3
        
                # compute loss
                # out: [b, 10]
                # y: [b] => [b, 10]
                y_onehot = tf.one_hot(y, depth=10)
        
                # mse = mean(sum(y-out)^2)
                # [b, 10]
                loss = tf.square(y_onehot - out)
                # mean: scalar
                loss = tf.reduce_mean(loss)
                
            # compute gradients
            grads = tape.gradient(loss, [w1, b1, w2, b2, w3, b3])
            # print(grads)
            # optimizer的作用:
            # w1 = w1 - lr * w1_grad
            '''
            grad为tf.Variable类型,使用 w1 = w1 - lr * grads[0]会让w1从tf.Variable
            变成tf.tensor类型,在再次运算的时候会报错,要使用assign_sub()原地更新,
            w1的数据类型才不会改变'''
        
            w1.assign_sub(lr * grads[0])
            b1.assign_sub(lr * grads[1])
            w2.assign_sub(lr * grads[2])
            b2.assign_sub(lr * grads[3])
            w3.assign_sub(lr * grads[4])
            b3.assign_sub(lr * grads[5])
            
            # print(isinstance(b3, tf.Variable))
            # print(isinstance(b3, tf.Tensor))
            
            if step % 100 == 0:
                print(epoch, step, 'loss:', float(loss))
    

    结果:

    0 0 loss: 0.6338542699813843
    0 100 loss: 0.19527742266654968
    0 200 loss: 0.19111016392707825
    0 300 loss: 0.16401150822639465
    0 400 loss: 0.17101189494132996
    1 0 loss: 0.1488364338874817
    1 100 loss: 0.13843022286891937
    1 200 loss: 0.1527971774339676
    1 300 loss: 0.13737797737121582
    1 400 loss: 0.14406141638755798
    2 0 loss: 0.1268216073513031
    2 100 loss: 0.12029824405908585
    2 200 loss: 0.13270306587219238
    2 300 loss: 0.12179452180862427
    2 400 loss: 0.12749424576759338
    3 0 loss: 0.11288430541753769
    3 100 loss: 0.10880843549966812
    3 200 loss: 0.11929886043071747
    3 300 loss: 0.11120941489934921
    3 400 loss: 0.11638245731592178
    4 0 loss: 0.10308767855167389
    4 100 loss: 0.10074740648269653
    4 200 loss: 0.10969498008489609
    4 300 loss: 0.10343489795923233
    4 400 loss: 0.10824362933635712
    5 0 loss: 0.09583660215139389
    5 100 loss: 0.09478463232517242
    5 200 loss: 0.10255211591720581
    5 300 loss: 0.09745050221681595
    5 400 loss: 0.1019618883728981
    ...
    

    若不设置sttdev,则容易梯度爆炸:

    0 0 loss: 387908.8125
    0 100 loss: nan
    0 200 loss: nan
    0 300 loss: nan
    0 400 loss: nan
    1 0 loss: nan
    1 100 loss: nan
    1 200 loss: nan
    1 300 loss: nan
    1 400 loss: nan
    2 0 loss: nan
    2 100 loss: nan
    2 200 loss: nan
    2 300 loss: nan
    2 400 loss: nan
    3 0 loss: nan
    3 100 loss: nan
    3 200 loss: nan
    3 300 loss: nan
    3 400 loss: nan
    ...
    
  • 相关阅读:
    mysql 往表中insert的时候如何让主键id按当前表的最大值自动增长?
    visual studio 2013 win7安装笔记
    mysql奇葩之旅
    java JVM常见的四大异常及处理方案
    DDR3_旧版(2):初始化
    DDR3_旧版(1):IP核调取
    【转】AXI_Lite 总线详解
    ZYNQ笔记(7):AXI从口自定义IP封装
    ZYNQ笔记(6):普通自定义IP封装实现PL精准定时中断
    ZYNQ笔记(5):软中断实现核间通信
  • 原文地址:https://www.cnblogs.com/pengweii/p/12521423.html
Copyright © 2011-2022 走看看