zoukankan      html  css  js  c++  java
  • HDOJ_1160_FatMouse's Speed

     单词:

    disprove  vt.  反驳; 证明…是虚假的;

    mice  n.  老鼠( mouse的名词复数 ); 鼠标; 羞怯[胆小]的人; mouse的复数形式;

    subset  n.  子集;

    grams  n.  克( gram的名词复数 );

    centimeters  n.  厘米( centimeter的名词复数 );

    Problem Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp
    

    Sample Output

    4
    2
    0
    

    思路:首先对重量进行排序,然后再找出最长路径。
    AC代码:
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #define Max 1005
    using namespace std;
    
    struct Mice
    {
        long long weight;
        long long speed;
        int sequence;
    }mice[Max];
    
    struct DP
    {
        int mommax; 
        int max;
        int pre;
    }dp[Max];
    
    int a[Max];
    
    bool compare(Mice a,Mice b)
    {
        if(a.weight==b.weight)
            return a.speed>b.speed;
        else
            return a.weight<b.weight;
    }
    
    
    int main(void)
    {
        freopen("in.txt","r",stdin);
        
        memset(mice,0,sizeof(mice));
        memset(dp,0,sizeof(dp));
        
        int i=1,n=0;
        while(scanf("%lld %lld",&mice[i].weight,&mice[i].speed)!=EOF)
        {
            mice[i].sequence=i;
            i++;
            n++;
        }
        
        sort(mice+1,mice+1+n,compare);
        
        int mmax=1,count=1;
        dp[1].max=1;
        for(i=2;i<=n;i++)
        {
            dp[i].max=1,dp[i].mommax=1;
            for(int j=i-1;j>=1;j--)
            {
                if(mice[i].weight>mice[j].weight&&mice[i].speed<mice[j].speed)
                    if(dp[i].max<dp[i].mommax+dp[j].max)
                    {
                        dp[i].max=dp[i].mommax+dp[j].max;
                        dp[i].pre=j;
                    }
            }
            
            if(mmax<dp[i].max)
            {
                mmax=dp[i].max;
                count=i;
            }
        }
        
        i=1;
        printf("%d
    ",mmax);
        while(dp[count].pre!=0)
        {
            a[i++]=count;
            count=dp[count].pre;
        }
        a[i]=count;
        
        for(;i>=1;i--)
            printf("%lld
    ",mice[a[i]].sequence);
        
        
        
        
        
        fclose(stdin);
        return 0;
    }
  • 相关阅读:
    求最大子数组02
    求最大子数组
    第3周学习进度
    四则运算3
    第2周学习进度
    构建之法阅读笔记02
    四则运算2及单元测试
    四则运算1
    第1周学习进度
    构建之法阅读笔记01
  • 原文地址:https://www.cnblogs.com/phaLQ/p/10129484.html
Copyright © 2011-2022 走看看