此文转载自:https://blog.csdn.net/weixin_43887421/article/details/109776020#commentBox
pandas:使用函数批量处理数据(map、apply、applymap)
前言
在我们对DataFrame对象进行处理时候,下意识的会想到对DataFrame进行遍历,然后将处理后的值再填入DataFrame中,这样做比较繁琐,且处理大量数据时耗时较长。Pandas内置了一个可以对DataFrame批量进行函数处理的工具:map、apply和applymap。
提示:为方便快捷地解决问题,本文仅介绍函数的主要用法,并非全面介绍
一、pandas.Series.map()是什么?
把Series中的值进行逐一映射,带入进函数、字典或Series中得出的另一个值。
Series.map(arg, na_action=None)
参数:
arg:函数、字典类数据、Series;映射对应关系
na_action{None, ‘ignore’}:默认为None;处理NaN变量,如果为None则不处理NaN对象,如果为‘ignore’则将NaN对象当做普通对象带入规则。
返回Series
二、pandas.Series.map()用法和优点
本节主要讲述map()函数的主要用法和相比于方法的优点
1、map()用法
创建案例DataFrame
import pandas as pd
import numpy as np
import time
data = pd.DataFrame({'name':['Verne Raymond','Chapman Becher','Patrick George','Saxon MacArthur',
'Joshua Marjory','Luther Pigou','Fanny Agnes','Karen Bush','Elaine Whitman'],
'gender':[0,1,0,0,1,1,1,0,1],'first_name':np.nan,'last_name':np.nan})
print(data)
name gender first_name last_name
0 Verne Raymond 0 NaN NaN
1 Chapman Becher 1 NaN NaN
2 Patrick George 0 NaN NaN
3 Saxon MacArthur 0 NaN NaN
4 Joshua Marjory 1 NaN NaN
5 Luther Pigou 1 NaN NaN
6 Fanny Agnes 1 NaN NaN
7 Karen Bush 0 NaN NaN
8 Elaine Whitman 1 NaN NaN
现在需要将name列的姓和名拆分开来分别放入first_name 和last_name里面,使用map()函数实现,并计算所用时间
def first_name_map(x):
return x.split(' ')[0]
def last_name_map(x):
return x.split(' ')[1]
data['first_name'] = data['name'].map(first_name_map)
data['last_name'] = data['name'].map(last_name_map)
print('use time:'+str(end-start))
print(data)
use time:0.0009970664978027344
name gender first_name last_name
0 Verne Raymond 0 Verne Raymond
1 Chapman Becher 1 Chapman Becher
2 Patrick George 0 Patrick George
3 Saxon MacArthur 0 Saxon MacArthur
4 Joshua Marjory 1 Joshua Marjory
5 Luther Pigou 1 Luther Pigou
6 Fanny Agnes 1 Fanny Agnes
7 Karen Bush 0 Karen Bush
8 Elaine Whitman 1 Elaine Whitman
如果要将性别代号的0、1替换为中文Male和Female,可以使用字典映射功能,如下
data['gender'] = data['gender'].map({0:'Female',1:'Male'})
print(data)
name gender first_name last_name
0 Verne Raymond Female Verne Raymond
1 Chapman Becher Male Chapman Becher
2 Patrick George Female Patrick George
3 Saxon MacArthur Female Saxon MacArthur
4 Joshua Marjory Male Joshua Marjory
5 Luther Pigou Male Luther Pigou
6 Fanny Agnes Male Fanny Agnes
7 Karen Bush Female Karen Bush
8 Elaine Whitman Male Elaine Whitman
2、map()相比其他方式的优点
较普通的方法主要是方便和速度快,下面例子进行对比,上面已经计算过使用map()方法处理的速度为:0.0009970664978027344
传统遍历
start = time.time()
for index,rows in data.iterrows():
data['first_name'][index] = rows['name'].split(' ')[0]
data['last_name'][index] = rows['name'].split(' ')[1]
end = time.time()
print('use time:'+str(end-start))
use time:0.5146446228027344
可以看到使用map()方法比使用直接遍历的方式快了500多倍
list暂存的方法
start = time.time()
first_name = []
last_name = []
for index,rows in data.iterrows():
first_name.append(rows['name'].split(' ')[0])
last_name.append(rows['name'].split(' ')[1])
data['first_name'] = first_name
data['last_name'] = last_name
end = time.time()
print('use time:'+str(end-start))
use time:0.001994609832763672
可以看出来使用list暂存的方法比遍历方法快了250多倍,但是比map方法还是慢了一半
二、apply()函数
apply()的使用方法与map()的使用方法类似,只是apply()除了传入Series参数外还可以多传入额外的参数。
Series.apply(func,convert_dtype = True,args = (), **kwds)
参数:
func:函数名称
convert_dtype:bool类值, 默认为True;尝试自己寻找最适合的数据类型。如果为False则dtype=object。
args:元组;在Series之后传递位置参数信息
**kwds:给函数传递其他参数(以字典的形式)
返回Series或DataFrame
下面是案例(参考官方文档案例)
s = pd.Series([20, 21, 12],index=['London', 'New York', 'Helsinki'])
print(s)
London 20
New York 21
Helsinki 12
dtype: int64
处理数据
def subtract_custom_value(x, custom_value):
return x - custom_value
s.apply(subtract_custom_value, args=(5,))
London 15
New York 16
Helsinki 7
dtype: int64
使用**kwds参数
def subtract_custom_value(x, **kwds):
for key in kwds:
x -= kwds[key]
return x
s.apply(subtract_custom_value, num = 5)
London 15
New York 16
Helsinki 7
dtype: int64
三、applymap()函数用法
applymap()函数处理的对象是DataFrame,并非Series,它没有前面两个函数用得多,但在某些情况也很有用。
DataFrame.applymap(func)
参数:
func:函数;要调用的Python函数,输入输出都为单个值
返回DataFrame
下面是简单的案例:
import pandas as pd
import numpy as np
data = pd.DataFrame(
{
"A":np.random.randn(3),
"B":np.random.randn(3),
"C":np.random.randn(3),
}
)
print(data )
A B C
0 2.128483 -1.701311 -1.362955
1 -1.149937 1.108856 -0.259637
2 -0.076621 -0.379672 -2.636464
计算所有值的平方:
data.applymap(lambda x: x**2)
A B C
0 4.530439 2.894459 1.857645
1 1.322356 1.229561 0.067411
2 0.005871 0.144151 6.950940
总结
本文展示了Pandas将数据映射到函数里批量快速处理的方法,主要使用的了Pandas自带的map、apply和applymap工具,实验结果是比普通循环快500倍,后续还将介绍更多数据处理实用的技巧。