zoukankan      html  css  js  c++  java
  • CNN做序列标注问题(tensorflow)

    一、搭建简单的CNN做序列标注代码

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
        
      
    TIME_STEPS = 15# backpropagation through time 的time_steps
    BATCH_SIZE = 1#50
    INPUT_SIZE = 1 # x数据输入size
    LR = 0.05  # learning rate
    num_tags = 2 
    # 定义一个生成数据的 get_batch function:
    def get_batch():
        xs = np.array([[[[2], [3], [4], [5], [5], [5], [1], [5], [3], [2], [5], [5], [5], [3], [5]]]])
        res = np.array([[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1]])
        ys = np.zeros([1,TIME_STEPS,2])
        for i in range(TIME_STEPS):
            if(res[0,i] == 0):
                ys[0,i,0] = 1
                ys[0,i,1] = 0
            else:
                ys[0,i,0] = 0
                ys[0,i,1] = 1
            
        return [xs, res,ys]
        
    # 定义 CNN 的主体结构
    class CNN(object):
        def __init__(self, n_steps, input_size, num_tags, batch_size):
            self.n_steps = n_steps
            self.input_size = input_size
            self.num_tags = num_tags
            self.batch_size = batch_size
            #卷积神将网络的输入:[batch, in_height, in_width, in_channels],在自然语言处理中height为1
            self.xs = tf.placeholder(tf.float32, [self.batch_size,1, self.n_steps, self.input_size], name='xs')
            #做序列标注,第二维对应好输入的n_steps,相当于每个时刻的输入都有一个输出
            self.ys = tf.placeholder(tf.int32, [self.batch_size, self.n_steps,self.num_tags], name='ys')#
            
            self.featureNum = 10#提取10个特征
            
            #[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数]
            W_conv1 = self.weight_variable([1,3,1,self.featureNum])#提取10个特征
            #对应10个卷积核输出
            b_conv1 = self.bias_varibale([self.featureNum]) 
        
            #卷积操作
            layer_conv1  = tf.nn.conv2d(self.xs, W_conv1,strides=[1, 1, 1, 1],padding="SAME",) + b_conv1
            #激励层
            layer_conv1  = tf.nn.relu(layer_conv1)
            #最大值池化  本处去除池化层为了后续计算简便
            #layer_pool1  = tf.nn.max_pool(layer_conv1,
            #                              [1, 1, 3, 1],[1,1,1,1],padding='VALID') 
            layer_pool1 = layer_conv1
    
            # 全连接层  映射到self.n_steps x self.num_tags
            layer_pool1 = tf.reshape(layer_pool1,[self.n_steps,self.featureNum])
            W_fc1  = self.weight_variable([self.featureNum,self.num_tags])
            b_fc1  = self.bias_varibale([self.num_tags])
            h_fc1  = tf.matmul(layer_pool1, W_fc1) + b_fc1
            #激励层
            h_fc1 = tf.nn.relu(h_fc1)
            #softmax 归一化
            self.y_conv = tf.nn.softmax(h_fc1)        
            self.label = tf.reshape(self.ys,[self.n_steps,2])
            self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.label, logits=self.y_conv))
            #梯度下降
            self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)      
            self.pred = tf.argmax(self.y_conv,axis = 1)
           
        def weight_variable(self,shape):
            initial=tf.truncated_normal(shape, mean=0.0, stddev=0.1)
            return tf.Variable(initial)
        def bias_varibale(self,shape):
            initial=tf.constant(0,1,shape=shape)
            return tf.Variable(initial)   
        
    # 训练CNN
    if __name__ == '__main__':
           
        # 搭建 CNN 模型
        model = CNN(TIME_STEPS, INPUT_SIZE, num_tags, BATCH_SIZE)
        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
          
        # matplotlib可视化
        plt.ion()  # 设置连续 plot
        plt.show()  
        # 训练多次
        for i in range(150):
            xs, res,ys = get_batch()  # 提取 batch data
            # 初始化 data
            feed_dict = {
                model.xs: xs,
                model.ys: ys,
            }        
            # 训练
            _, cost,pred = sess.run(
                [model.train_op, model.cost,  model.pred],
                feed_dict=feed_dict)
    
        
            # plotting
      
            x = xs.reshape(-1,1)
            r = res.reshape(-1, 1)
            p = pred.reshape(-1, 1)
              
            x = range(len(x))
              
            plt.clf()
            plt.plot(x, r, 'r', x, p, 'b--')
            plt.ylim((-1.2, 1.2))
            plt.draw()
            plt.pause(0.3)  # 每 0.3 s 刷新一次
              
            # 打印 cost 结果
            if i % 20 == 0:
                print('cost: ', round(cost, 4))
    

      得到结果:

    二、CNN主要知识点

      待整理。

  • 相关阅读:
    linux下编译sphinx拓展
    Java为什么使用连接池
    内部类之.this&&.new
    何为代理
    Qt install Phonon
    Gcc简介与常用命令
    Vim的设置和使用——编程者
    QT程序启动界面的使用
    slide from one widget to another
    Hide the common top menu in Ubuntu 12.04
  • 原文地址:https://www.cnblogs.com/pinking/p/9445513.html
Copyright © 2011-2022 走看看