zoukankan      html  css  js  c++  java
  • noip2010普及组 接水问题分析

    学校里有一个水房,水房里一共装有 m 个龙头可供同学们打开水,每个龙头每秒钟的供水量相等,均为 1。 
    现在有 n 名同学准备接水,他们的初始接水顺序已经确定。将这些同学按接水顺序从 1到 n 编号,i号同学的接水量为 wi。接水开始时,1 到 m号同学各占一个水龙头,并同时打开水龙头接水。当其中某名同学 j 完成其接水量要求 wj 后,下一名排队等候接水的同学 k马上接替 j 同学的位置开始接水。这个换人的过程是瞬间完成的,且没有任何水的浪费。即j 同学第x 秒结束时完成接水, 则 k 同学第 x+1 秒立刻开始接水。 若当前接水人数 n’不足 m,则只有 n’个龙头供水,其它 m−n’个龙头关闭。
    现在给出 n名同学的接水量,按照上述接水规则,问所有同学都接完水需要多少秒。
    
    输入格式:
    
    第 1 行2 个整数 n 和 m,用一个空格隔开,分别表示接水人数和龙头个数。 
    第 2 行 n 个整数 w1、w2、……、wn,每两个整数之间用一个空格隔开,wi表示 i 号同学的接水量。
    输出格式:
    
    输出只有一行,1 个整数,表示接水所需的总时间。
    样例1
    5 3 
    4 4 1 2 1
    
    样例2
    8 4 
    23 71 87 32 70 93 80 76
    样例1
    4
    
    样例2
    163

    这道题有两种解法:

    1.模拟法

      这是比较容易想到的。既然时间是整数单位,可以使用一个变量代表时间,一秒一秒模拟事件发生。

    #include<bits/stdc++.h>
    using namespace std;
    #define maxn 10000
    int m[maxn],times[maxn];
    
    int main()
    {
        int nm,nn;
        cin>>nn>>nm;
        for (int i=0;i<=nn-1;i++) cin>>times[i];
        int nnbef=nn;
        int s=0;//总时间
        int max=-1;
        for (int i=0;i<=nm-1;i++) {m[i]=times[i];times[i]=0;nn--;}//一切前提基于nn>=nm  if (m[i]>max)max=m[i];
        // s+=max;max=-1;
        while (nn>0){//还有人剩余
            s++;//时间过了1s...
        for (int i=0;i<=nm-1;i++) {//扫描每个水桶
            m[i]--;
            if (m[i]==0) {
                nn--;
                for (int j=0;j<=nnbef-1;j++) {
                    if (times[j]!=0) {//寻找最近的打水者
                        m[i]=times[j];
                        times[j]=0;
                        break;
                    }
                }
            }
        }
        }
        for (int i=0;i<=nm-1;i++) {if (m[i]>max)max=m[i];}//一切前提基于nn>=nm
        s+=max;
        cout<<s;
        return 0;
    }

    2.排序法

      这个方法非常有效。

      步骤如下:

      1.给前m人排序;

      2.将(m+1)人的时间w(m+1)依次加上原来排序的数列;

      3.排序并重复2,直到n人全部被加过;

      4.输出数列;

      

    想得美,自己写!!!
    View Code
    著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 No sacrifice , no victory.
  • 相关阅读:
    五、异步任务编排CompletableFuture
    四、fork/join框架
    三、阻塞等待异步结果FutureTask
    二、synchronized同步锁
    一、Java多线程基础
    6. ZigZag Conversion (字符串的连接)
    5. Longest Palindromic Substring (DP)
    4. Median of Two Sorted Arrays (二分法;递归的结束条件)
    3. Longest Substring Without Repeating Characters (ASCII码128个,建立哈西表)
    2. Add Two Numbers
  • 原文地址:https://www.cnblogs.com/pityhero233/p/7283458.html
Copyright © 2011-2022 走看看