zoukankan      html  css  js  c++  java
  • Lightoj 1002

    I am going to my home. There are many cities and many bi-directional roads between them. The cities are numbered from 0 to n-1 and each road has a cost. There are m roads. You are given the number of my city t where I belong. Now from each city you have to find the minimum cost to go to my city. The cost is defined by the cost of the maximum road you have used to go to my city.

     

    For example, in the above picture, if we want to go from 0 to 4, then we can choose

    1)      0 - 1 - 4 which costs 8, as 8 (1 - 4) is the maximum road we used

    2)      0 - 2 - 4 which costs 9, as 9 (0 - 2) is the maximum road we used

    3)      0 - 3 - 4 which costs 7, as 7 (3 - 4) is the maximum road we used

    So, our result is 7, as we can use 0 - 3 - 4.

    Input

    Input starts with an integer T (≤ 20), denoting the number of test cases.

    Each case starts with a blank line and two integers n (1 ≤ n ≤ 500) and m (0 ≤ m ≤ 16000). The next m lines, each will contain three integers u, v, w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 20000) indicating that there is a road between u and v with cost w. Then there will be a single integer t (0 ≤ t < n). There can be multiple roads between two cities.

    Output

    For each case, print the case number first. Then for all the cities (from 0 to n-1) you have to print the cost. If there is no such path, print 'Impossible'.

    Sample Input

    Output for Sample Input

    2

    5 6

    0 1 5

    0 1 4

    2 1 3

    3 0 7

    3 4 6

    3 1 8

    1

    5 4

    0 1 5

    0 1 4

    2 1 3

    3 4 7

    1

    Case 1:

    4

    0

    3

    7

    7

    Case 2:

    4

    0

    3

    Impossible

    Impossible

    Note

    Dataset is huge, user faster I/O methods.

    /* ***********************************************
    Author        :guanjun
    Created Time  :2016/6/6 18:42:59
    File Name     :1002.cpp
    ************************************************ */
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <stdio.h>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #include <string>
    #include <math.h>
    #include <stdlib.h>
    #include <iomanip>
    #include <list>
    #include <deque>
    #include <stack>
    #define ull unsigned long long
    #define ll long long
    #define mod 90001
    #define INF 0x3f3f3f3f
    #define maxn 10010
    #define cle(a) memset(a,0,sizeof(a))
    const ull inf = 1LL << 61;
    const double eps=1e-5;
    using namespace std;
    priority_queue<int,vector<int>,greater<int> >pq;
    struct Node{
        int x,y;
    };
    struct cmp{
        bool operator()(Node a,Node b){
            if(a.x==b.x) return a.y> b.y;
            return a.x>b.x;
        }
    };
    
    bool cmp(int a,int b){
        return a>b;
    }
    int edge[510][510];
    int w[510][510];
    int vis[510],lowcost[510];
    int n,m,k;
    int dis[maxn];
    void prime(){
        memset(dis,-1,sizeof dis);
        dis[k]=0;
        cle(vis);
        vis[k]=1;
        for(int i=0;i<n;i++){
            lowcost[i]=edge[k][i];
        }
        int Min,x;
        while(1){
            Min=INF;
            for(int i=0;i<n;i++){
                if(lowcost[i]<Min&&!vis[i]){
                    Min=lowcost[i],x=i;
                }
            }
            if(Min==INF)break;
            vis[x]=1;
            dis[x]=Min;
            for(int i=0;i<n;i++){
                if(!vis[i]&&max(dis[x],edge[x][i])<lowcost[i]){
                    lowcost[i]=max(edge[x][i],dis[x]);
                }
            }
        }
    }
    int main()
    {
        #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
        #endif
        //freopen("out.txt","w",stdout);
        int T,x,y,z;
        cin>>T;
        for(int t=1;t<=T;t++){
            printf("Case %d:
    ",t);
            memset(edge,INF,sizeof edge);
            cin>>n>>m;
            for(int i=1;i<=m;i++){
                scanf("%d%d%d",&x,&y,&z);
                if(z<edge[x][y]){
                    edge[x][y]=z;
                    edge[y][x]=z;
                }
            }
            cin>>k;
            prime();
            for(int i=0;i<n;i++){
                if(dis[i]==-1)puts("Impossible");
                else printf("%d
    ",dis[i]);
            }
        }
        return 0;
    }
  • 相关阅读:
    SSH使用TCP Wrappers实现访问控制
    Java设计模式(15)——行为模式之策略模式(Strategy)
    Java设计模式(14)——行为模式之不变模式(Immutable)
    Java设计模式(13)——结构型模式之桥梁模式(Bridge)
    Java设计模式(12)——结构型模式之门面模式(Facade)
    Java设计模式(11)——结构型模式之享元模式(Flyweight)
    Java设计模式(10)——结构型模式之代理模式(Proxy)
    Java设计模式(9)——结构型模式之装饰模式(Decorator)
    Java设计模式(8)——结构型模式之组合模式(Composite)
    Java设计模式(7)——结构型模式之适配器模式(Adapter)
  • 原文地址:https://www.cnblogs.com/pk28/p/5564871.html
Copyright © 2011-2022 走看看