zoukankan      html  css  js  c++  java
  • 常用的机器学习&数据挖掘知识点总结

    Basis(基础):

    MSE(Mean Square Error 均方误差),
    LMS(LeastMean Square 最小均方),
    LSM(Least Square Methods 最小二乘法),
    MLE(MaximumLikelihood Estimation最大似然估计),
    QP(Quadratic Programming 二次规划),
    CP(Conditional Probability条件概率),
    JP(Joint Probability 联合概率),
    MP(Marginal Probability边缘概率),
    Bayesian Formula(贝叶斯公式),
    L1 /L2Regularization(L1/L2正则,
    以及更多的,现在比较火的L2.5正则等),
    GD(GradientDescent 梯度下降),
    SGD(Stochastic Gradient Descent 随机梯度下降),
    Eigenvalue(特征值),
    Eigenvector(特征向量),
    QR-decomposition(QR分解),
    Quantile (分位数),
    Covariance(协方差矩阵)。

    Common Distribution(常见分布):

    Discrete Distribution(离散型分布):

    BernoulliDistribution/Binomial(贝努利分布/二项分布),
    Negative BinomialDistribution(负二项分布),
    MultinomialDistribution(多项式分布),
    Geometric Distribution(几何分布),
    HypergeometricDistribution(超几何分布),
    Poisson Distribution (泊松分布)。

    Continuous Distribution (连续型分布):

    UniformDistribution(均匀分布),
    Normal Distribution /Guassian Distribution(正态分布/高斯分布),
    ExponentialDistribution(指数分布),
    Lognormal Distribution(对数正态分布),
    GammaDistribution(Gamma分布),
    Beta Distribution(Beta分布),
    Dirichlet Distribution(狄利克雷分布),
    Rayleigh Distribution(瑞利分布),
    Cauchy Distribution(柯西分布),
    Weibull Distribution (韦伯分布)。

    Three Sampling Distribution(三大抽样分布):

    Chi-squareDistribution(卡方分布),
    t-distribution(t-distribution),
    F-distribution(F-分布)。

    Data Pre-processing(数据预处理):

    Missing Value Imputation(缺失值填充),
    Discretization(离散化),Mapping(映射),
    Normalization(归一化/标准化)。

    Sampling(采样):

    Simple Random Sampling(简单随机采样),
    OfflineSampling(离线等可能K采样),
    Online Sampling(在线等可能K采样),
    Ratio-based Sampling(等比例随机采样),
    Acceptance-RejectionSampling(接受-拒绝采样),
    Importance Sampling(重要性采样),
    MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。

    Clustering(聚类):

    K-Means,
    K-Mediods,
    二分K-Means,
    FK-Means,
    Canopy,
    Spectral-KMeans(谱聚类),
    GMM-EM(混合高斯模型-期望最大化算法解决),
    K-Pototypes,CLARANS(基于划分),
    BIRCH(基于层次),
    CURE(基于层次),
    DBSCAN(基于密度),
    CLIQUE(基于密度和基于网格)。

    Classification&Regression(分类&回归):

    LR(Linear Regression 线性回归),
    LR(LogisticRegression逻辑回归),
    SR(Softmax Regression 多分类逻辑回归),
    GLM(GeneralizedLinear Model 广义线性模型),
    RR(Ridge Regression 岭回归/L2正则最小二乘回归),
    LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归),
    RF(随机森林),
    DT(DecisionTree决策树),
    GBDT(Gradient BoostingDecision Tree 梯度下降决策树),
    CART(ClassificationAnd Regression Tree 分类回归树),
    KNN(K-Nearest Neighbor K近邻),
    SVM(Support VectorMachine),
    KF(KernelFunction 核函数PolynomialKernel Function 多项式核函、
    Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、
    String KernelFunction 字符串核函数)、
    NB(Naive Bayes 朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络),
    LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别),
    EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),
    AdaBoost(Adaptive Boosting 自适应增强),
    MEM(MaximumEntropy Model最大熵模型)。

    Effectiveness Evaluation(分类效果评估):

    Confusion Matrix(混淆矩阵),
    Precision(精确度),Recall(召回率),
    Accuracy(准确率),F-score(F得分),
    ROC Curve(ROC曲线),AUC(AUC面积),
    LiftCurve(Lift曲线) ,KS Curve(KS曲线)。

    PGM(Probabilistic Graphical Models概率图模型):

    BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络),
    MC(Markov Chain 马尔科夫链),
    HMM(HiddenMarkov Model 马尔科夫模型),
    MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型),
    CRF(ConditionalRandom Field 条件随机场),
    MRF(MarkovRandom Field 马尔科夫随机场)。

    NN(Neural Network神经网络):

    ANN(Artificial Neural Network 人工神经网络),
    BP(Error BackPropagation 误差反向传播)。

    Deep Learning(深度学习):

    Auto-encoder(自动编码器),
    SAE(Stacked Auto-encoders堆叠自动编码器,
    Sparse Auto-encoders稀疏自动编码器、
    Denoising Auto-encoders去噪自动编码器、
    Contractive Auto-encoders 收缩自动编码器),
    RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),
    DBN(Deep Belief Network 深度信念网络),
    CNN(ConvolutionalNeural Network 卷积神经网络),
    Word2Vec(词向量学习模型)。

    DimensionalityReduction(降维):

    LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,
    PCA(Principal Component Analysis 主成分分析),
    ICA(IndependentComponent Analysis 独立成分分析),
    SVD(Singular Value Decomposition 奇异值分解),
    FA(FactorAnalysis 因子分析法)。

    Text Mining(文本挖掘):

    VSM(Vector Space Model向量空间模型),
    Word2Vec(词向量学习模型),
    TF(Term Frequency词频),
    TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率),
    MI(MutualInformation 互信息),
    ECE(Expected Cross Entropy 期望交叉熵),
    QEMI(二次信息熵),
    IG(InformationGain 信息增益),
    IGR(Information Gain Ratio 信息增益率),
    Gini(基尼系数),
    x2 Statistic(x2统计量),
    TEW(TextEvidence Weight文本证据权),
    OR(Odds Ratio 优势率),
    N-Gram Model,
    LSA(Latent Semantic Analysis 潜在语义分析),
    PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析),
    LDA(Latent DirichletAllocation 潜在狄利克雷模型)。

    Association Mining(关联挖掘):

    Apriori,
    FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),
    AprioriAll,
    Spade。

    Recommendation Engine(推荐引擎):

    DBR(Demographic-based Recommendation 基于人口统计学的推荐),
    CBR(Context-basedRecommendation 基于内容的推荐),
    CF(Collaborative Filtering协同过滤),
    UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐),
    ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。

    Similarity Measure&Distance Measure(相似性与距离度量):

    Euclidean Distance(欧式距离),
    ManhattanDistance(曼哈顿距离),
    Chebyshev Distance(切比雪夫距离),
    MinkowskiDistance(闵可夫斯基距离),
    Standardized Euclidean Distance(标准化欧氏距离),
    MahalanobisDistance(马氏距离),
    Cos(Cosine 余弦),
    HammingDistance/Edit Distance(汉明距离/编辑距离),
    JaccardDistance(杰卡德距离),
    Correlation Coefficient Distance(相关系数距离),
    InformationEntropy(信息熵),
    KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。

    Optimization(最优化):

    Non-constrainedOptimization(无约束优化):

    Cyclic VariableMethods(变量轮换法),
    Pattern Search Methods(模式搜索法),
    VariableSimplex Methods(可变单纯形法),
    Gradient Descent Methods(梯度下降法),
    Newton Methods(牛顿法),
    Quasi-NewtonMethods(拟牛顿法),
    Conjugate Gradient Methods(共轭梯度法)。

    ConstrainedOptimization(有约束优化):

    Approximation Programming Methods(近似规划法),
    FeasibleDirection Methods(可行方向法),
    Penalty Function Methods(罚函数法),
    Multiplier Methods(乘子法)。
    Heuristic Algorithm(启发式算法),
    SA(SimulatedAnnealing,
    模拟退火算法),
    GA(genetic algorithm遗传算法)。

    Feature Selection(特征选择算法):

    Mutual Information(互信息),
    DocumentFrequence(文档频率),
    Information Gain(信息增益),
    Chi-squared Test(卡方检验),
    Gini(基尼系数)。

    Outlier Detection(异常点检测算法):

    Statistic-based(基于统计),
    Distance-based(基于距离),
    Density-based(基于密度),
    Clustering-based(基于聚类)。

    Learning to Rank(基于学习的排序):

    Pointwise:McRank;
    Pairwise:RankingSVM,RankNet,Frank,RankBoost;
    Listwise:AdaRank,SoftRank,LamdaMART。

    Tool(工具):

    MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
    以及一些具体的业务场景与case等。

  • 相关阅读:
    .net做UG NX二次开发(VB.net) / NX Secondry Dev. with .net using VB.net Code
    UGS Object ID 工具 [开源]
    Build a NX Open .NET application
    Open C、Open C++和NXOpen C++混合开发
    UG二次开发技术的研究
    ufun视频教程
    互联网上的阴暗战争
    谈谈UG二次开发的Open和NXOpen
    IBM云计算平台下 Windows Server 2003虚拟机的使用
    使用IBM云计算平台虚拟机
  • 原文地址:https://www.cnblogs.com/pk28/p/7397016.html
Copyright © 2011-2022 走看看