zoukankan      html  css  js  c++  java
  • pytorch学习笔记

    参考莫烦python:

    cnn:

    import torch
    import torch.utils.data as Data
    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    import torch.nn as nn
    import torchvision
    
    EPOCH = 1
    BATCH_SIZE = 50
    LR = 0.01
    DOWNLOAD_MNIST = False
    
    train_data = torchvision.datasets.MNIST(
        root = './minst/',
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=DOWNLOAD_MNIST
    )
    
    # plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    # plt.title('%i' % train_data.train_data_labels[0])
    # plt.show()
    
    train_loader = Data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    test_data = torchvision.datasets.MNIST(root='./minst/', train=False)
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.test_labels[:2000]
    
    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential( #1 * 16 * 16
                nn.Conv2d(
                    in_channels=1,
                    out_channels=16,
                    kernel_size=5,
                    stride=1,
                    padding=2,
                ), #16 * 28 * 28
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2), #16 * 14 * 14
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(16, 32, 5, 1, 2), #32 * 14 * 14
                nn.ReLU(),
                nn.MaxPool2d(2) #32 * 7 * 7
            )
            self.out = nn.Linear(32 * 7 * 7, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = x.view(x.size(0), -1) #压缩图像成一维
            output = self.out(x)
            return output
    
    cnn = CNN()
    print(cnn)
    
    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()   # the target label is not one-hotted
    
    # training and testing
    for epoch in range(EPOCH):
        for step, (b_x, b_y) in enumerate(train_loader):   # 分配 batch data, normalize x when iterate train_loader
            output = cnn(b_x)               # cnn output
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # backpropagation, compute gradients
            optimizer.step()                # apply gradients
    
            if step % 50 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                print('Epoch:', epoch, '|train loss: %.4f' % loss.data)
                print('|accuracy: %.4f' % accuracy)
    
    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')

     rnn:

    import torch
    import torch.utils.data as Data
    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    import torch.nn as nn
    import torchvision
    
    EPOCH = 1
    BATCH_SIZE = 64
    TIME_STEP = 28
    INPUT_SIZE = 28
    LR = 0.01
    DOWNLOAD_MNIST = False
    
    train_data = torchvision.datasets.MNIST(
        root='./minst/',
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=DOWNLOAD_MNIST
    )
    
    # plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    # plt.title('%i' % train_data.train_data_labels[0])
    # plt.show()
    
    train_loader = Data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    test_data = torchvision.datasets.MNIST(root='./minst/', train=False)
    test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.test_labels[:2000]
    
    class RNN(nn.Module):
        def __init__(self):
            super(RNN, self).__init__()
            self.rnn = nn.LSTM(
                input_size=INPUT_SIZE,
                hidden_size=64,
                num_layers=1,
                batch_first=True,
            )
            self.out = nn.Linear(64, 10)
    
        def forward(self, x):
            r_out, (h_n, h_c) = self.rnn(x, None)
            out = self.out(r_out[:, -1, :])
            return out
    
    rnn = RNN()
    print(rnn)
    
    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()   # the target label is not one-hotted
    
    # training and testing
    for epoch in range(EPOCH):
        for step, (x, b_y) in enumerate(train_loader):   # 分配 batch data, normalize x when iterate train_loader
            b_x = x.view(-1, 28, 28)
            output = rnn(b_x)               # cnn output
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # backpropagation, compute gradients
            optimizer.step()                # apply gradients
    
            if step % 50 == 0:
                test_output = rnn(test_x.view(-1, 28, 28))
                pred_y = torch.max(test_output, 1)[1].data.squeeze()
                accuracy = sum(pred_y == test_y) / float(test_y.size(0))
                print('Epoch:', epoch, '|train loss: %.4f' % loss.data)
                print('|accuracy: %.4f' % accuracy)
    
    test_output = rnn(test_x[:10].view(-1, 28, 28))
    pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')

     rnn(回归)

    import torch
    import torch.utils.data as Data
    import matplotlib.pyplot as plt
    import torch.nn.functional as F
    import torch.nn as nn
    import torchvision
    import numpy as np
    
    EPOCH = 1
    BATCH_SIZE = 64
    TIME_STEP = 28
    INPUT_SIZE = 1
    LR = 0.02
    DOWNLOAD_MNIST = False
    
    # train_data = torchvision.datasets.MNIST(
    #     root='./minst/',
    #     train=True,
    #     transform=torchvision.transforms.ToTensor(),
    #     download=DOWNLOAD_MNIST
    # )
    
    # plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
    # plt.title('%i' % train_data.train_data_labels[0])
    # plt.show()
    
    steps = np.linspace(0, np.pi * 2, 100, dtype=np.float32)
    # x_np = np.sin(steps)
    # y_np = np.cos(steps)
    # plt.plot(steps, y_np, 'r-', label='target(cos)')
    # plt.plot(steps, x_np, 'b-', label='input(sin)')
    # plt.legend(loc='best')
    # plt.show()
    
    class RNN(nn.Module):
        def __init__(self):
            super(RNN, self).__init__()
            self.rnn = nn.RNN(
                input_size=INPUT_SIZE,
                hidden_size=32,
                num_layers=1,
                batch_first=True
            )
            self.out = nn.Linear(32, 1)
    
        def forward(self, x, h_state):
            r_out, h_state = self.rnn(x, h_state)
            outs = []
            for time_step in range(r_out.size(1)):
                outs.append(self.out(r_out[:, time_step, :]))
            return torch.stack(outs, dim=1), h_state
    
    rnn = RNN()
    print(rnn)
    
    optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all rnn parameters
    loss_func = nn.MSELoss()
    
    h_state = None   # 要使用初始 hidden state, 可以设成 None
    
    for step in range(100):
        start, end = step * np.pi, (step+1)*np.pi   # time steps
        # sin 预测 cos
        steps = np.linspace(start, end, 10, dtype=np.float32)
        x_np = np.sin(steps)    # float32 for converting torch FloatTensor
        y_np = np.cos(steps)
    
        x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])    # shape (batch, time_step, input_size)
        y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis])
    
        prediction, h_state = rnn(x, h_state)   # rnn 对于每个 step 的 prediction, 还有最后一个 step 的 h_state
        # !!  下一步十分重要 !!
        h_state = h_state.data  # 要把 h_state 重新包装一下才能放入下一个 iteration, 不然会报错
    
        loss = loss_func(prediction, y)     # cross entropy loss
        optimizer.zero_grad()               # clear gradients for this training step
        loss.backward()                     # backpropagation, compute gradients
        optimizer.step()                    # apply gradients
        if step % 5 == 0:
            tmp = torch.squeeze(prediction)
            plt.plot(steps, y_np, 'r-', label='target(cos)')
            plt.plot(steps, tmp.detach().numpy(), 'b-', label='output')
            plt.legend(loc='best')
            # plt.show()
            plt.ion()
            plt.pause(1)
            plt.close()
  • 相关阅读:
    LeetCode-49. Group Anagrams
    LeetCode-242.Valid Anagram
    LeetCode-239.Sliding Window Maximum
    LeetCode-703. Kth Largest Element in a Stream
    LeetCode-225.Implement Stack using Queues
    LeetCode-232.Implement Queue using Stacks
    LeetCode-25. Reverse Nodes in k-Group
    LeetCode-142.Linked List Cycle II
    LeetCode-141. Linked List Cycle
    LeetCode-24.Swap Nodes in Pairs
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/14521494.html
Copyright © 2011-2022 走看看