题目描述
某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。
为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。
现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。
请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。
输入输出格式
输入格式:
文件第一行是两个数字n(1<=n<=50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);
接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。数据保证路灯位置单调递增。
输出格式:
一个数据,即最少的功耗(单位:J,1J=1W·s)。
输入输出样例
说明
输出解释:
{此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}
解析:
思想:区间dp(单位转换),左右都可以自由转动的话,那么专门开一维存左右位置(位置状态比方向状态要好)
考虑区间 (i,j) 与之相关可以用来将其更新的有 (i+1,j) (i,j-1)
再加上一维(左0,右1)
(i,j,0) -->(i+1,j,0),(i+1,j,1)
(i,j,1) -->(i,j-1,0),(i,j-1,1)
状态转移方程:
当前区间获得的最小总功率
dp[i][j][0]=min(dp[i+1][j][0]+sum(i+1,j)*(t[i+1]-t[i]),dp[i+1][j][1]+sum(i+1,j)*(t[j]-t[i]));
dp[i][j][1]=min(dp[i][j-1][0]+sum(i,j-1)*(t[j]-t[i]),dp[i][j-1][1]+sum(i,j-1)*(t[j]-t[j-1]));
sum(i,j)是(i,j)区间外的所有灯泡功率之和
初始化:
dp[c][c][0]=0,dp[c][c][1]=0;
注意下遍历顺序
#include<bits/stdc++.h> using namespace std; const int maxn=30005; #define inf 0x3f3f3f3f typedef long long ll; #define ri register int #define getchar() (S==T&&(T=(S=BB)+fread(BB,1,1<<15,stdin),S==T)?EOF:*S++) char BB[1 << 18], *S = BB, *T = BB; inline int read() { int x=0; int ch=getchar(),f=1; while (!isdigit(ch)&&(ch!='-')&&(ch!=EOF)) ch=getchar(); if (ch=='-') { f=-1; ch=getchar(); } while (isdigit(ch)) { x=(x<<1)+(x<<3)+ch-'0'; ch=getchar(); } return x*f; } int n; int dp[55][55][3]; int sum[55]; int dis[55]; int c; int main() { cin>>n>>c; for(int i=1; i<=n; i++) { cin>>dis[i]>>sum[i]; sum[i]+=sum[i-1]; } memset(dp,0x3f,sizeof(dp)); dp[c][c][0]=dp[c][c][1]=0; for(int j=c; j<=n; j++) for(int i=j-1; i>=1; i--) { dp[i][j][0]=min(dp[i+1][j][0]+(dis[i+1]-dis[i])*(sum[n]-sum[j]+sum[i]), dp[i+1][j][1]+(dis[j]-dis[i])*(sum[n]-sum[j]+sum[i])); dp[i][j][1]=min(dp[i][j-1][0]+(dis[j]-dis[i])*(sum[n]-sum[j-1]+sum[i-1]), dp[i][j-1][1]+(dis[j]-dis[j-1])*(sum[n]-sum[j-1]+sum[i-1])); } cout<<min(dp[1][n][0],dp[1][n][1]); return 0; }