The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4518 Accepted Submission(s): 1879
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very
easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
Recommend
gaojie | We have carefully selected several similar problems for you: 2818 2825 2817 2822 2821
解析:(转)
定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目。
例如:φ(8)=4,因为1,3,5,7均和8互质。
性质:1.若p是质数,φ(p)= p-1.
2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1)。因为除了p的倍数都与n互质
3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n).
根据这3条性质我们就可以推出一个整数的欧拉函数的公式。因为一个数总可以写成一些质数的乘积的形式。
E(k)=(p1-1)(p2-1)...(pi-1)*(p1^(a1-1))(p2^(a2-1))...(pi^(ai-1))
= k*(p1-1)(p2-1)...(pi-1)/(p1*p2*...*pi)
= k*(1-1/p1)*(1-1/p2)...(1-1/pk)
在程序中利用欧拉函数如下性质,可以快速求出欧拉函数的值(a为N的质因素)
若( N%a ==0&&(N/a)%a ==0)则有:E(N)= E(N/a)*a;
若( N%a ==0&&(N/a)%a !=0)则有:E(N)= E(N/a)*(a-1);
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int N=3000010; int prime[N],isprime[N]; int phi[N]; void get_phi() { int i,j,cnt=0; for(i=2;i<N;i++) { if(isprime[i]==0) { prime[cnt++]=i; phi[i]=i-1; } for(j=0;j<cnt && i*prime[j]<N;j++) { //注意这里,i*prime[j]<N 可换成 prime[j]<=N/i(带等号) isprime[i*prime[j]]=1; if(i%prime[j]==0) phi[i*prime[j]]=phi[i]*prime[j]; else phi[i*prime[j]]=phi[i]*(prime[j]-1); } } } int main() { long long sum; int a,b; get_phi(); while(~scanf("%d%d",&a,&b)) { sum=0; for(int i=a;i<=b;i++) sum+=phi[i]; cout<<sum<<endl; } return 0; }