zoukankan      html  css  js  c++  java
  • hdoj Radar Installation

    Problem Description
    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

    Figure A Sample Input of Radar Installations


     

    Input
    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

    The input is terminated by a line containing pair of zeros
     

    Output
    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
     

    Sample Input
    3 2 1 2 -3 1 2 1 1 2 0 2 0 0
     

    Sample Output
    Case 1: 2 Case 2: 1
    #include<stdio.h>
    #include<math.h>
    #include<algorithm>
    using namespace std;
    struct node
    {
    	 float l,r,x,y;
    }d[1100];
    int cmp(node x,node y)
    {
    	return x.l<y.l;/*按照区域的最左端排序*/
    }
    int main()
    {
    	int sum,t,m,n,flog=1,Case=1,i,num,j;
    	while(scanf("%d%d",&m,&n),m||n)
    	{
    		for(i=0;i<m;i++)
    		{
    			scanf("%f%f",&d[i].x,&d[i].y);
    			if(d[i].y>n) 
    			{
    			flog=0;break;
    			}
    			else 
    			{
    				d[i].l=d[i].x-sqrt(n*n-d[i].y*d[i].y);/*求出雷达的扫描区域*/
    				d[i].r=d[i].x+sqrt(n*n-d[i].y*d[i].y);
    			}
    		}
    		printf("Case %d: ",Case);
    		if(flog==0) printf("-1
    ");
    		else 
    		{
    			int sign=0;num=0;
    			sort(d,d+m,cmp);
    			num++;sign=d[0].r;/*这个很重要,sign始终标记雷达所能扫描的最右端*/
    			for(i=1;i<m;i++)/*至少设置一个雷达,如果当前判断的区域达不到雷达最右端,加设一个雷达*/
    			{
    				if(d[i].r<sign)
    				sign=d[i].r;
    				else if(d[i].l>sign)
    				{
    					num++;sign=d[i].r;
    				}
    			}
    			printf("%d
    ",num);
    		}
    	}
    	return 0;
    }

  • 相关阅读:
    silverlight 打印
    Silverlight 设置颜色
    JAVA开发Web Service几种框架介绍
    初始化 Gradle 工程目录(转自: 隔叶黄莺 Unmi Blog)
    正则表达式集合
    软件工程(一)
    JAVA多线程与多进程
    配置hibernate根据实体类自动建表功能(转载)
    配置DruidDataSource参考(com.alibaba.druid.pool.DruidDataSource)
    JVM内存堆布局图解分析
  • 原文地址:https://www.cnblogs.com/playboy307/p/5273858.html
Copyright © 2011-2022 走看看