zoukankan      html  css  js  c++  java
  • cvxpy 示例代码

    cvxpy 优化模型示例代码

    1. 线性规划

    如果线性规划的最优解存在,则最优解只能在可行域的边界上达到(特别是在可行域的顶点上达到)

    import cvxpy as cp
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    
    data = pd.read_csv('Pdata.csv', header=None, encoding='utf-8')
    darray = data.values
    
    c = darray[:-1, :-1]
    e = darray[:-1, -1].reshape(-1, 1)
    d = darray[-1, :-1].reshape(1, -1)
    
    x = cp.Variable((6, 8))
    
    obj = cp.Minimize(cp.sum(cp.multiply(c, x))) # c, x 同形状, 这里是矩阵的点乘
    
    # x 的每一行求列和, 均小于e的每一行; x 的每一列求行和, 等于d的每一行, x 的每一个元素均非负
    
    con = [cp.sum(x, axis=1, keepdims=True) <= e,
           cp.sum(x, axis=0, keepdims=True) == d,
           x >= 0]
    
    prob = cp.Problem(obj, con)
    
    prob.solve(solver='GLPK_MI', verbose=True)
    
    print('最优值为: {0}
    最优解为{1}'.format(prob.value, x.value))
    
    1. 整数规划
    import cvxpy as cp
    import numpy as np
    import pandas as pd
    
    c = np.array([40, 90])
    a = np.array([[9,7], [-7,-20]])
    b = np.array([56, -70])
    
    x = cp.Variable(2, integer=True) # 约束必须为整数
    
    obj = cp.Minimize(cp.sum(cp.multiply(c, x))) # cp.multiply 为对应元素相乘, 要求c ,x同形状, 且结果与c 、x同形状
    
    cons = [a @ x <= b, x >= 0] # @ 矩阵乘法
    
    prob = cp.Problem(obj, cons)
    
    prob.solve(solver='GLPK_MI', verbose=True)
    
    print(prob.value)
    print(x.value)
    
    1. 指派问题
    import pandas as pd
    import numpy as np
    import cvxpy as cp
    from matplotlib import pyplot as plt
    
    
    data = pd.read_csv('Pdata02.csv', encoding='utf-8', header=None)
    
    darray = data.values
    
    x = cp.Variable((5,5), integer=True)
    obj = cp.Minimize(cp.sum(cp.multiply(darray, x)))
    con = [0 <= x, x <= 1, cp.sum(x, axis=0, keepdims=True) == 1, cp.sum(x, axis=1, keepdims=True) == 1]
    prob = cp.Problem(obj, con)
    prob.solve(solver='GLPK_MI')
    print(prob.value)
    print(x.value)
    
    1. 装箱问题 - 1988美赛B
    #%%
    import cvxpy as cp
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    
    data = pd.read_csv('Pdata03.csv', encoding='utf-8', header=None)
    darray = data.values
    
    length = darray[0, :]
    weight = darray[1, :]
    number = darray[2, :]
    
    l_2 = length.copy()
    l_2[:4] = 0
    
    L = 1020
    W = 40000
    S = 302.7
    
    x = cp.Variable((7, 2), integer=True)
    
    obj = cp.Maximize(cp.sum(cp.multiply(weight, cp.sum(x, axis=1))))
    
    cons = []
    
    cons.append(cp.sum(x, axis=1) <= number)
    cons.append(x >= 0)
    cons.append(length @ x <= L)
    cons.append(weight @ x <= W)
    cons.append(cp.sum(l_2 @ x) <= S)
    
    prob = cp.Problem(obj, cons)
    
    prob.solve(solver='GLPK_MI', verbose=True)
    print(prob.value)
    print(x.value)
    
    1. 非线性规划
    import cvxpy as cp
    import numpy as np
    import pandas as pd
    from matplotlib import pyplot as plt
    
    c1 = np.array([1, 1, 3, 4, 2])
    c2 = np.array([-8, -2, -3, -1, -2])
    a = np.array([[1,1,1,1,1], [1,2,2,1,6], [2,1,6,0,0], [0,0,1,1,5]])
    
    b = np.array([400, 800, 200, 200])
    
    x = cp.Variable(5, integer=True)
    
    obj = cp.Minimize(c1*x**2+c2*x)
    
    con = [0 <= x, x <= 99, a@x <= b]
    
    prob = cp.Problem(obj, con)
    
    prob.solve(solver='ECOS_BB')
    
    print(prob.value)
    print(x.value)
    
    ---- suffer now and live the rest of your life as a champion ----
  • 相关阅读:
    mysql总结
    ContOS7 安装 java1.8
    查找
    排序
    线程通信(交替执行)
    死锁(实现)
    Rank Scores
    OpenMP
    聚类的数据量过大的问题
    编译GraphLab出错
  • 原文地址:https://www.cnblogs.com/popodynasty/p/15025204.html
Copyright © 2011-2022 走看看