zoukankan      html  css  js  c++  java
  • POJ1797(dijkstra求最短最长边)

    Heavy Transportation
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 26442   Accepted: 7044

    Description

    Background 
    Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
    Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

    Problem 
    You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

    Input

    The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

    Sample Input

    1
    3 3
    1 2 3
    1 3 4
    2 3 5
    

    Sample Output

    Scenario #1:
    4
    题意:求结点1到结点n的所有每个路径中的最小承载量中的最大值(与:所有路径中最长边的最短值相区别)。
    /*    
        dijkstra Accepted    4316 KB    391 ms
    */
    #include"cstdio"
    #include"cstring"
    #include"algorithm"
    using namespace std;
    const int MAXN=1002;
    const int INF=0x3fffffff;
    int mp[MAXN][MAXN];
    int V,E;
    
    int dijkstra(int s)
    {
        int vis[MAXN];
        memset(vis,0,sizeof(vis));
        int d[MAXN];//代表最大承载量 
        for(int i=1;i<=V;i++)    d[i]=mp[s][i];
        
        int n=V;
        while(n--)
        {
            int maxcost,k;
            maxcost=0;
            for(int i=1;i<=V;i++)
            {
                if(!vis[i]&&d[i]>maxcost)
                {
                    k=i;
                    maxcost=d[i];
                }
            }
            
            vis[k]=1;
            for(int i=1;i<=V;i++)
            {
                if(!vis[i]&&d[i]<min(d[k],mp[k][i]))
                {
                    d[i]=min(d[k],mp[k][i]);
                }
            }
        }
        return d[V];
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        for(int cas=1;cas<=T;cas++)
        {
            memset(mp,0,sizeof(mp));//承载量初始化为0
            scanf("%d%d",&V,&E);
            for(int i=0;i<E;i++)
            {
                int u,v,cost;
                scanf("%d%d%d",&u,&v,&cost);
                mp[u][v]=mp[v][u]=cost;
            }
            
                    
            printf("Scenario #%d:
    ",cas);
            printf("%d
    
    ",dijkstra(1));
        }
        
        return 0;
    }
    /*
        floyd Time Limit Exceeded
    */
    #include"cstdio"
    #include"algorithm"
    using namespace std;
    const int MAXN=1002;
    const int INF=0x3fffffff;
    int mp[MAXN][MAXN];
    int main()
    {
        int T;
        scanf("%d",&T);
        for(int cas=1;cas<=T;cas++)
        {
            int V,E;
            scanf("%d%d",&V,&E);
            for(int i=1;i<=V;i++)
                for(int j=1;j<=V;j++)
                    if(i==j)    mp[i][j]=0;
                    else    mp[i][j]=INF;    
            for(int i=0;i<E;i++)
            {
                int u,v,cost;
                scanf("%d%d%d",&u,&v,&cost);
                mp[u][v]=mp[v][u]=cost;
            }
            
            for(int k=1;k<=V;k++)
                for(int i=1;i<=V;i++)
                    for(int j=1;j<=V;j++)
                        if(mp[i][k]<mp[i][j]&&mp[k][j]<mp[i][j])
                            mp[i][j]=max(mp[i][k],mp[k][j]);
            
            printf("Scenario #%d:
    ",cas);
            printf("%d
    
    ",mp[1][V]);
        }
        
        return 0;
    }
    /*
        堆优化dijkstra 1797    Accepted    5224K    329MS     
    */
    #include"cstdio"
    #include"queue"
    #include"vector"
    #include"algorithm"
    #include"cstring"
    using namespace std;
    const int MAXN=1002;
    const int INF=0x3fffffff;
    struct Edge{
        int to,cost;
        Edge(int to,int cost)
        {
            this->to=to;
            this->cost=cost;
        }
        friend bool operator<(const Edge &a,const Edge &b)
        {
            return a.cost < b.cost;
        }
    };
    int V,E;
    vector<int> G[MAXN];
    int mp[MAXN][MAXN];
    int dijkstra(int s)
    {
        int d[MAXN];
        priority_queue<Edge> que;
    
        for(int i=1;i<=V;i++)    
        {
            que.push(Edge(i,mp[s][i]));
            d[i]=mp[s][i];
        }    
        while(!que.empty())
        {
            Edge e=que.top();que.pop();
            if(e.to==V)    return e.cost;
            
            int v=e.to;
            if(d[v]>e.cost)    continue;
            for(int i=0;i<G[v].size();i++)
            {
                int u=G[v][i];
                if(d[u]<min(d[v],mp[v][u]))
                {
                    d[u]=min(d[v],mp[v][u]);
                    que.push(Edge(u,d[u]));
                }            
            }
        }
        return -1;
    }
    int main()
    {
        
        int T;
        scanf("%d",&T);
        for(int cas=1;cas<=T;cas++)
        {
            memset(mp,0,sizeof(mp));
            scanf("%d%d",&V,&E);
            for(int i=1;i<=V;i++)
            {
                G[i].clear();
            }
            for(int i=0;i<E;i++)
            {
                int u,v,cost;
                scanf("%d%d%d",&u,&v,&cost);
                G[u].push_back(v);
                G[v].push_back(u);
                mp[u][v]=mp[v][u]=cost;
            }    
            printf("Scenario #%d:
    ",cas);
            printf("%d
    
    ",dijkstra(1));
        }
        
        return 0;
    }

     二分+bfs

    /*
        1797    Accepted    1420K    329MS    C++
    */
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    using namespace std;
    const int MAXN=1005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w;
        Edge(){}
        Edge(int to,int w)
        {
            this->to=to;
            this->w=w;
        }
    };
    int n,m;
    vector<Edge> arc[MAXN];
    int src,ter,vis[MAXN];
    bool bfs(int limit)
    {
        memset(vis,0,sizeof(vis));
        queue<int> que;
        que.push(src);
        vis[src]=1;
        while(!que.empty())
        {
            int u=que.front();que.pop();
            if(u==ter)    return true;
            for(int i=0,size=arc[u].size();i<size;i++)
            {
                Edge e=arc[u][i];
                if(!vis[e.to]&&limit<=e.w)
                {
                    vis[e.to]=1;
                    que.push(e.to);
                }
            }
        }
        return false;
    }
    int main()
    {
        int T;
        scanf("%d",&T);    
        for(int cas=1;cas<=T;cas++)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)    arc[i].clear();
            src=1;
            ter=n;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                arc[u].push_back(Edge(v,w));
                arc[v].push_back(Edge(u,w));
            }
            int l=0,r=INF;
            while(r-l>1)
            {
                int mid=(l+r)/2;
                if(bfs(mid))
                {
                    l=mid;
                }
                else
                {
                    r=mid;
                }
            }
            printf("Scenario #%d:
    ",cas);
            printf("%d
    
    ",l);
        }
        return 0;
    }
  • 相关阅读:
    winform利用itextsharp.dll实现图片文件转换PDF格式文件
    winform 实现选择文件和选择文件夹对话框
    ASP利用xhEditor编辑器实现图片上传的功能。
    winform c#中子窗体关闭刷新父窗体
    ASP.NET js控制treeview中的checkbox实现单选功能
    js如何获取asp.net服务器端控件的值(label,textbox,dropdownlist,radiobuttonlist等)
    ASP.NET C# 登陆窗体 限制用户名只输入字母 数字以及下划线
    GridView通过RowDataBound事件获取字段值、数据源列值
    Window.Open()方法详细的参数说明及技巧。
    获取GridView中RowCommand的当前索引行(转)
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5146914.html
Copyright © 2011-2022 走看看