zoukankan      html  css  js  c++  java
  • POJ1365:素数

    Prime Land
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 3552   Accepted: 1609

    Description

    Everybody in the Prime Land is using a prime base number system. In this system, each positive integer x is represented as follows: Let {pi}i=0,1,2,... denote the increasing sequence of all prime numbers. We know that x > 1 can be represented in only one way in the form of product of powers of prime factors. This implies that there is an integer kx and uniquely determined integers ekx, ekx-1, ..., e1, e0, (ekx > 0), that  The sequence 

    (ekx, ekx-1, ... ,e1, e0



    is considered to be the representation of x in prime base number system. 

    It is really true that all numerical calculations in prime base number system can seem to us a little bit unusual, or even hard. In fact, the children in Prime Land learn to add to subtract numbers several years. On the other hand, multiplication and division is very simple. 

    Recently, somebody has returned from a holiday in the Computer Land where small smart things called computers have been used. It has turned out that they could be used to make addition and subtraction in prime base number system much easier. It has been decided to make an experiment and let a computer to do the operation ``minus one''. 

    Help people in the Prime Land and write a corresponding program. 

    For practical reasons we will write here the prime base representation as a sequence of such pi and ei from the prime base representation above for which ei > 0. We will keep decreasing order with regard to pi. 

    Input

    The input consists of lines (at least one) each of which except the last contains prime base representation of just one positive integer greater than 2 and less or equal 32767. All numbers in the line are separated by one space. The last line contains number 0.

    Output

    The output contains one line for each but the last line of the input. If x is a positive integer contained in a line of the input, the line in the output will contain x - 1 in prime base representation. All numbers in the line are separated by one space. There is no line in the output corresponding to the last ``null'' line of the input.

    Sample Input

    17 1
    5 1 2 1
    509 1 59 1
    0

    Sample Output

    2 4
    3 2
    13 1 11 1 7 1 5 1 3 1 2 1

    思路:直接模拟
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int MAXN=32768;
    int prime[MAXN],len;
    bool isPrime[MAXN];
    void init()
    {
        memset(isPrime,true,sizeof(isPrime));
        for(int i=2;i<MAXN;i++)
        {
            if(isPrime[i])
            {
                prime[len++]=i;
                for(int j=i+i;j<MAXN;j+=i)
                    isPrime[j]=false;
            }
        }
    }
    int counter[MAXN];
    long long npow(int x,int n)
    {
        long long res=1;
        while(n>0)
        {
            if(n&1)
                res*=x;
            x*=x;
            n>>=1;
        }
        return res;
    }
    int main()
    {
        int p,e;
        char op;
        init();
        while(true)
        {
            memset(counter,0,sizeof(counter));
            scanf("%d%*c",&p);
            if(p==0)    break;
            scanf("%d%c",&e,&op);
            long long mul=1;
            mul*=npow(p,e);
            while(op!='
    ')
            {
                scanf("%d%*c%d%c",&p,&e,&op);
                mul*=npow(p,e);
            }
            mul--;
            int l=0;
            while(mul!=1)
            {
                while(mul%prime[l]==0)
                {
                    counter[prime[l]]++;
                    mul/=prime[l];
                }
                l++;
            }
            int _stack[MAXN],top=0;
            for(int i=0;i<len;i++)
                if(counter[prime[i]]!=0)
                    _stack[top++]=prime[i];
                
            for(int i=top-1;i>=1;i--)
                printf("%d %d ",_stack[i],counter[_stack[i]]);
            printf("%d %d
    ",_stack[0],counter[_stack[0]]);
        }
            
        return 0;
    }


  • 相关阅读:
    转载:SSH无法连接error:couldnotloadhostkey:/etc/ssh/ssh_host_dsa_key
    docker修改运行中的容器端口映射
    查看iis进程(w3wp)所对应的程序池名称 / 端口使用情况
    jenkins+sonar+钉钉 发布.net
    windows使用jenkins 搭建 .net 自动发布IIS站点平台
    Redis
    20191209---自定义异常类--转载
    借助pywinauto实现本地文件上传--转载
    python虚拟环境搭建,虚拟环境迁移,三方库安装
    python 在不同层级目录import 模块的方法
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5475899.html
Copyright © 2011-2022 走看看