Pseudoprime numbers
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8529 | Accepted: 3577 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
思路:问p是不是伪素数。伪素数条件:①p不是素数。② ap = a (mod p)。
#include <iostream> using namespace std; typedef unsigned long long ull; ull a,p; bool testPrime(ull x) { for(ull i=2;i*i<=x;i++) { if(x%i==0) { return false; } } return true; } ull mpow(ull x,ull n,ull mod) { ull res=1; while(n>0) { if(n&1) { res=(res*x)%mod; } x=(x*x)%mod; n>>=1; } return res; } int main() { while(cin>>p>>a) { if(a==0&&p==0) break; if(testPrime(p)) { cout<<"no"<<endl; } else { if(mpow(a,p,p)==a%p) { cout<<"yes"<<endl; } else { cout<<"no"<<endl; } } } return 0; }