zoukankan      html  css  js  c++  java
  • POJ1159:动态规划

    Palindrome
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 60290   Accepted: 20998

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome. 

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome. 

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int MAXN=5005;
    unsigned short int dp[MAXN][MAXN];//dp[i][j]表示以第i个字母开头,第j个字母结尾的构成回文子串所需添加的字符串 
    char s[MAXN];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            scanf("%s",s);
            for(int i=0;i<n;i++)
            {
                dp[i][i]=0;//有一个字符时 
            }        
            for(int i=1;i<n;i++)
            {
                if(s[i-1]==s[i])
                    dp[i-1][i]=0;
                else
                    dp[i-1][i]=1;
            }
            for(int k=2;k<n;k++)
            {
                for(int i=0,j=k;j<n;i++,j++)
                {
                    if(s[i]==s[j])
                        dp[i][j]=dp[i+1][j-1];
                    else
                        dp[i][j]=min(dp[i+1][j],dp[i][j-1])+1;
                } 
            }
            printf("%d
    ",dp[0][n-1]);
        }
        return 0;
    }
  • 相关阅读:
    CodeForces 7B
    CodeForces 4D
    离散化
    线段树入门
    洛谷 P3951 小凯的疑惑(赛瓦维斯特定理)
    Codeforces 1295D Same GCDs (欧拉函数)
    Codeforces 1295C Obtain The String (二分)
    Codeforces 1295B Infinite Prefixes
    Codeforces 1295A Display The Number(思维)
    Codeforces 1294F Three Paths on a Tree(树的直径,思维)
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5698921.html
Copyright © 2011-2022 走看看