zoukankan      html  css  js  c++  java
  • HDU1695(容斥原理)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 9811    Accepted Submission(s): 3682


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2
    1 3 1 5 1
    1 11014 1 14409 9
     
    Sample Output
    Case 1: 9
    Case 2: 736427
     
    思路:题意可转化为求[1,b/k]与[1,d/k]组成数对(x,y)。x,y互质的对数。当x与y均不大于min(b/k,d/k)时,需要将答案除以2。
    #include <cstdio>
    #include <algorithm> 
    #include <vector>
    using namespace std;
    const int MAXN=100001;
    typedef long long LL;
    LL b,d,k;
    vector<LL> divisor[MAXN];
    void prep()
    {
        for(LL e=1;e<MAXN;e++)
        {
            LL x=e;
            for(LL i=2;i*i<=x;i++)
            {
                if(x%i==0)
                {
                    divisor[e].push_back(i);
                    while(x%i==0)    x/=i;
                }
            }
            if(x>1)    divisor[e].push_back(x);
        }
    }
    LL sieve(LL m,LL n)
    {
        LL ans=0;
        for(LL mark=1;mark<(1<<divisor[n].size());mark++)
        {
            LL mul=1;
            LL odd=0;
            for(LL i=0;i<divisor[n].size();i++)
            {
                if(mark&(1<<i))
                {
                    mul*=divisor[n][i];
                    odd++;
                }
            }
            LL cnt=m/mul;
            if(odd&1)    ans+=cnt;
            else    ans-=cnt;
        }
        return m-ans;
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        prep();
        for(int cas=1;cas<=T;cas++)
        {
            scanf("%*d%lld%*d%lld%lld",&b,&d,&k);
            printf("Case %d: ",cas);
            if(k==0)
            {
                printf("%d
    ",0);
                continue;
            } 
            b/=k;
            d/=k;
            if(b>d)    swap(d,b);
            LL res=0;
            for(LL i=1;i<=b;i++)
            {
                LL cnt=sieve(b,i);
                res+=cnt;
            }
            res=(res+1)/2;
            for(LL i=b+1;i<=d;i++)
            {
                LL cnt=sieve(b,i);
                res+=cnt;
            }
            printf("%lld
    ",res);
        }
        return 0;
    }
  • 相关阅读:
    POJ 2411 状态压缩递,覆盖方案数
    POJ 2774 最长公共子串
    POJ 1743 不可重叠的最长重复子串
    POJ 3294 出现在至少K个字符串中的子串
    POJ 3261 出现至少K次的可重叠最长子串
    POJ 1741/1987 树的点分治
    HDU1556 Color the ball
    解决linux系统时间不对的问题
    CentOS 6.9使用Setup配置网络(解决dhcp模式插入网线不自动获取IP的问题)
    Linux网络配置(setup)
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5813331.html
Copyright © 2011-2022 走看看