zoukankan      html  css  js  c++  java
  • HDU1695(容斥原理)

    GCD

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 9811    Accepted Submission(s): 3682


    Problem Description
    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

    Yoiu can assume that a = c = 1 in all test cases.
     
    Input
    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
     
    Output
    For each test case, print the number of choices. Use the format in the example.
     
    Sample Input
    2
    1 3 1 5 1
    1 11014 1 14409 9
     
    Sample Output
    Case 1: 9
    Case 2: 736427
     
    思路:题意可转化为求[1,b/k]与[1,d/k]组成数对(x,y)。x,y互质的对数。当x与y均不大于min(b/k,d/k)时,需要将答案除以2。
    #include <cstdio>
    #include <algorithm> 
    #include <vector>
    using namespace std;
    const int MAXN=100001;
    typedef long long LL;
    LL b,d,k;
    vector<LL> divisor[MAXN];
    void prep()
    {
        for(LL e=1;e<MAXN;e++)
        {
            LL x=e;
            for(LL i=2;i*i<=x;i++)
            {
                if(x%i==0)
                {
                    divisor[e].push_back(i);
                    while(x%i==0)    x/=i;
                }
            }
            if(x>1)    divisor[e].push_back(x);
        }
    }
    LL sieve(LL m,LL n)
    {
        LL ans=0;
        for(LL mark=1;mark<(1<<divisor[n].size());mark++)
        {
            LL mul=1;
            LL odd=0;
            for(LL i=0;i<divisor[n].size();i++)
            {
                if(mark&(1<<i))
                {
                    mul*=divisor[n][i];
                    odd++;
                }
            }
            LL cnt=m/mul;
            if(odd&1)    ans+=cnt;
            else    ans-=cnt;
        }
        return m-ans;
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        prep();
        for(int cas=1;cas<=T;cas++)
        {
            scanf("%*d%lld%*d%lld%lld",&b,&d,&k);
            printf("Case %d: ",cas);
            if(k==0)
            {
                printf("%d
    ",0);
                continue;
            } 
            b/=k;
            d/=k;
            if(b>d)    swap(d,b);
            LL res=0;
            for(LL i=1;i<=b;i++)
            {
                LL cnt=sieve(b,i);
                res+=cnt;
            }
            res=(res+1)/2;
            for(LL i=b+1;i<=d;i++)
            {
                LL cnt=sieve(b,i);
                res+=cnt;
            }
            printf("%lld
    ",res);
        }
        return 0;
    }
  • 相关阅读:
    有赞个性化推荐能力的演进与实践
    Doge.jpg 的背后是什么,你知道么?
    实操|如何将 Containerd 用作 Kubernetes runtime
    Linux 用键盘操作窗口
    Oracle中join left,join right,inner join,(+) 等
    sql之left join、right join、inner join的区别
    SQL中GROUP BY的用法
    Oracle CASE WHEN 用法介绍
    Oracle数据库面试题
    Oracle笔试题库之问答题篇-总共60道
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5813331.html
Copyright © 2011-2022 走看看