zoukankan      html  css  js  c++  java
  • hdu 3631 Shortest Path(floyd)

    Shortest Path

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5061    Accepted Submission(s): 1225


    Problem Description
    When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in Informatics) in GD team. One day, GD team’s coach, Prof. GUO asked them to solve the following shortest-path problem.
    There is a weighted directed multigraph G. And there are following two operations for the weighted directed multigraph:
    (1) Mark a vertex in the graph.
    (2) Find the shortest-path between two vertices only through marked vertices.
    For it was the first time that LMY faced such a problem, she was very nervous. At this moment, YY decided to help LMY to analyze the shortest-path problem. With the help of YY, LMY solved the problem at once, admiring YY very much. Since then, when LMY meets problems, she always calls YY to analyze the problems for her. Of course, YY is very glad to help LMY. Finally, it is known to us all, YY and LMY become programming lovers.
    Could you also solve the shortest-path problem?
     
    Input
    The input consists of multiple test cases. For each test case, the first line contains three integers N, M and Q, where N is the number of vertices in the given graph, N≤300; M is the number of arcs, M≤100000; and Q is the number of operations, Q ≤100000. All vertices are number as 0, 1, 2, … , N - 1, respectively. Initially all vertices are unmarked. Each of the next M lines describes an arc by three integers (x, y, c): initial vertex (x), terminal vertex (y), and the weight of the arc (c). (c > 0) Then each of the next Q lines describes an operation, where operation “0 x” represents that vertex x is marked, and operation “1 x y” finds the length of shortest-path between x and y only through marked vertices. There is a blank line between two consecutive test cases.
    End of input is indicated by a line containing N = M = Q = 0.
     
    Output
    Start each test case with "Case #:" on a single line, where # is the case number starting from 1.
    For operation “0 x”, if vertex x has been marked, output “ERROR! At point x”.
    For operation “1 x y”, if vertex x or vertex y isn’t marked, output “ERROR! At path x to y”; if y isn’t reachable from x through marked vertices, output “No such path”; otherwise output the length of the shortest-path. The format is showed as sample output.
    There is a blank line between two consecutive test cases.
     
    Sample Input
    5 10 10
    1 2 6335
    0 4 5725
    3 3 6963
    4 0 8146
    1 2 9962
    1 0 1943
    2 1 2392
    4 2 154
    2 2 7422
    1 3 9896
    0 1
    0 3
    0 2
    0 4
    0 4
    0 1
    1 3 3
    1 1 1
    0 3
    0 4
    0 0 0
     
    Sample Output
    Case 1:
    ERROR! At point 4
    ERROR! At point 1
    0
    0
    ERROR! At point 3
    ERROR! At point 4
     
    题意:一个单向图,先输入n个点,m条边,k次询问。接下来m行输入相连点的边和距离,然后输入k次询问。输入0,x,表示标记x点,输入1,x,y,表示询问点x到点y的距离。只能走已标记的点。如果标记的点已标记 输出 ERROR! At point x,如果询问距离的两点有未标记的,输出 ERROR! At path x to y,如果都标记了,但是走不通,则输出 No such path,否则输出两点之间的距离。
     
    floyd的灵活运用,直接用新标记的点更新,避免了O(n*n*n)
     
    附上代码:
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #define INF 0x3f3f3f3f
     5 using namespace std;
     6 int n,m,k;
     7 int map[305][305];
     8 int vis[305];
     9 void floyd(int k)  ///新插入的点
    10 {
    11     int i,j;
    12     for(i=0; i<n; i++)
    13         for(j=0; j<n; j++)
    14             if(map[i][j]>map[i][k]+map[k][j])
    15                 map[i][j]=map[i][k]+map[k][j];
    16 }
    17 int main()
    18 {
    19     int cas=1,i,j;
    20     while(~scanf("%d%d%d",&n,&m,&k))
    21     {
    22         if(n==0&&m==0&&k==0)
    23         break;
    24         memset(vis,0,sizeof(vis));
    25         for(i=0; i<n; i++)
    26             for(j=0; j<n; j++)
    27                 if(i==j) map[i][j]=0;
    28                 else     map[i][j]=INF;
    29         int a,b,c;
    30         while(m--)
    31         {
    32             scanf("%d%d%d",&a,&b,&c);
    33             if(map[a][b]>c)
    34                 map[a][b]=c;
    35         }
    36         if(cas!=1)
    37             printf("
    ");
    38         printf("Case %d:
    ",cas++);
    39         int x,y;
    40         while(k--)
    41         {
    42             scanf("%d",&c);
    43             if(c)
    44             {
    45                 scanf("%d%d",&x,&y);
    46                 if(vis[x]&&vis[y])
    47                 {
    48                     if(map[x][y]!=INF)
    49                         printf("%d
    ",map[x][y]);
    50                     else
    51                         printf("No such path
    ");
    52                 }
    53                 else
    54                     printf("ERROR! At path %d to %d
    ",x,y);
    55             }
    56             else
    57             {
    58                 scanf("%d",&x);
    59                 if(vis[x])
    60                     printf("ERROR! At point %d
    ",x);
    61                 else
    62                 {
    63                     vis[x]=1;
    64                     floyd(x);
    65                 }
    66             }
    67         }
    68     }
    69     return 0;
    70 }
  • 相关阅读:
    存储过程简介
    微信公众号开发之授权获取用户信息
    微信公众号开发之自定义菜单
    微信公众号开发之如何实现消息交互
    VS2012创建ATL工程及使用MFC测试COM组件
    Regsvr32 在64位机器上的用法(转载)
    模块加载失败 请确保该二进制文件在指定的路径中 找不到指定的模块(转载)
    [内核驱动] miniFilter 内核层与应用程序通信
    [内核驱动] VS2012+WDK 8.0 Minifilter实现指定扩展名文件拒绝访问
    InstallShield 2015 生成单个EXE包和 MSI包
  • 原文地址:https://www.cnblogs.com/pshw/p/5749824.html
Copyright © 2011-2022 走看看