zoukankan      html  css  js  c++  java
  • 【数学】线性筛

    (i) 的最小质因数 (pm[i])
    (i) 的最大的最小质因数的幂 (pk[i])

    判断 (i) 是不是质数的充要条件为 (i>1 ; and ; pm[i]=i)

    const int MAXN = 1e6 + 10;
    int p[MAXN], ptop;
    int pm[MAXN], pk[MAXN];
    
    void sieve(int n) {
        memset(pm, 0, sizeof(pm[0]) * (n + 1));
        ptop = 0, pm[1] = 1, pk[1] = 1;
        for(int i = 2; i <= n; ++i) {
            if(!pm[i])
                p[++ptop] = i, pm[i] = i, pk[i] = i;
            for(int j = 1, t; j <= ptop && (t = i * p[j]) <= n; ++j) {
                pm[t] = p[j];
                if(i % p[j])
                    pk[t] = pk[p[j]];
                else {
                    pk[t] = pk[i] * p[j];
                    break;
                }
            }
        }
    }
    

    数论函数

    除数函数 (sigma_k(n))(n) 的因子的 (k) 次方和,当 (k=0) 时,为 (n) 的因数个数 (d(n))

    (i) 的因数个数 (pd[i])
    (i) 的最大的最小质因数的幂 (pk[i])

    const int MAXN = 1e6 + 10;
    int p[MAXN], ptop;
    int pm[MAXN], pk[MAXN], pd[MAXN];
    
    void sieve(int n) {
        memset(pm, 0, sizeof(pm[0]) * (n + 1));
        ptop = 0, pm[1] = 1, pk[1] = 1, pd[1] = 1;
        for(int i = 2; i <= n; ++i) {
            if(!pm[i]) {
                p[++ptop] = i, pm[i] = i;
                pk[i] = i, pd[i] = 2;
            }
            for(int j = 1, t; j <= ptop && (t = i * p[j]) <= n; ++j) {
                pm[t] = p[j];
                if(i % p[j]) {
                    pk[t] = pk[p[j]];
                    pd[t] = pd[i] * pd[p[j]];
                } else {
                    pk[t] = pk[i] * p[j];
                    pd[t] = (pk[t] == t) ? pd[t / p[j]] + 1 : pd[t / pk[t]] * pd[pk[t]];
                    break;
                }
            }
        }
    }
    

    Euler函数:

    const int MAXN = 1e6 + 10;
    int p[MAXN], ptop;
    int pm[MAXN], pk[MAXN], phi[MAXN];
    
    void sieve(int n) {
        memset(pm, 0, sizeof(pm[0]) * (n + 1));
        ptop = 0, pm[1] = 1, pk[1] = 1, phi[1] = 1;
        for(int i = 2; i <= n; ++i) {
            if(!pm[i]) {
                p[++ptop] = i, pm[i] = i;
                pk[i] = i, phi[i] = i - 1;
            }
            for(int j = 1, t; j <= ptop && (t = i * p[j]) <= n; ++j) {
                pm[t] = p[j];
                if(i % p[j]) {
                    pk[t] = pk[p[j]];
                    phi[t] = phi[i] * phi[p[j]];
                } else {
                    pk[t] = pk[i] * p[j];
                    phi[t] = (pk[t] == t) ? t - t / p[j] : phi[t / pk[t]] * phi[pk[t]];
                    break;
                }
            }
        }
    }
    

    Mobius函数

    const int MAXN = 1e6 + 10;
    int p[MAXN], ptop;
    int pm[MAXN], pk[MAXN], mu[MAXN];
    
    void sieve(int n) {
        memset(pm, 0, sizeof(pm[0]) * (n + 1));
        ptop = 0, pm[1] = 1, pk[1] = 1, mu[1] = 1;
        for(int i = 2; i <= n; ++i) {
            if(!pm[i]) {
                p[++ptop] = i, pm[i] = i;
                pk[i] = i, mu[i] = -1;
            }
            for(int j = 1, t; j <= ptop && (t = i * p[j]) <= n; ++j) {
                pm[t] = p[j];
                if(i % p[j]) {
                    pk[t] = pk[p[j]];
                    mu[t] = mu[i] * mu[p[j]];
                } else {
                    pk[t] = pk[i] * p[j];
                    mu[t] = (pk[t] == t) ? 0 : mu[t / pk[t]] * mu[pk[t]];
                    break;
                }
            }
        }
    }
    

    任意的积性函数

    分为1,质数,质数的幂三种不同情形,其他的用积性函数的性质得到。

    const int MAXN = 1e6 + 10;
    int p[MAXN], ptop;
    int pm[MAXN], pk[MAXN], f[MAXN];
    
    void sieve(int n) {
        memset(pm, 0, sizeof(pm[0]) * (n + 1));
        ptop = 0, pm[1] = 1, pk[1] = 1, f[1] = getF1();
        for(int i = 2; i <= n; ++i) {
            if(!pm[i]) {
                p[++ptop] = i, pm[i] = i;
                pk[i] = i, f[i] = getFp(i);
            }
            for(int j = 1, t; j <= ptop && (t = i * p[j]) <= n; ++j) {
                pm[t] = p[j];
                if(i % p[j]) {
                    pk[t] = pk[p[j]];
                    f[t] = f[i] * f[p[j]];
                } else {
                    pk[t] = pk[i] * p[j];
                    f[t] = (pk[t] == t) ? getFpk(t, p[j]) : f[t / pk[t]] * f[pk[t]];
                    break;
                }
            }
        }
    }
    
  • 相关阅读:
    mvc:resources配置说明
    MySQL 表与索引损坏修复
    ORACLE 日志损坏 使用"_ALLOW_RESETLOGS_CORRUPTION"进行崩溃恢复
    Oracle 回滚段坏快并恢复
    Oracle 坏快处理:Undo 与 datafile
    Oracle备份恢复-控制文件损坏的各种场景恢复专题
    Oracle备份恢复-redo文件损坏的各种场景恢复专题
    Oracle 数据库坏块处理技术
    PostgreSQL 坏快分类与修复策略
    Linux RAID卡优化
  • 原文地址:https://www.cnblogs.com/purinliang/p/13955059.html
Copyright © 2011-2022 走看看