zoukankan      html  css  js  c++  java
  • 【数学】中国剩余定理

    中国剩余定理

    一元线性同余方程组

    ( xequiv r_1 (mod m_1)\ xequiv r_2 (mod m_2)\ xequiv r_3 (mod m_3)\ ...\ xequiv r_n (mod m_n)\ )

    其中,对于任意的 (i eq j)(gcd(m_i,m_j)=1)

    算法流程:
    计算所有模的乘积 (M=prodlimits_{i=1}^n m_i)
    对于第 (i) 个方程,计算新的模 (M_i=frac{M}{m_i})
    计算新的模 (M_i) 在模 (m_i) 意义下的逆元 (inv(M_i))
    方程的唯一解为 (xequiv sumlimits_{i=1}^n r_i*M_i*inv(M_i) (mod M))

    中国剩余定理并不会无解。所有模数的乘积不能超过long long的范围,后面的乘法溢出可以用qmul避免。

    验证链接:https://www.luogu.com.cn/problem/P1495

    namespace CRT {
    
        ll qmul(ll a, ll b, ll mod) {
            ll res = 0;
            while(b) {
                if(b & 1)
                    res = (res + a) % mod;
                a = (a + a) % mod, b >>= 1;
            }
            return res;
        }
    
        ll exgcd(ll a, ll b, ll &x, ll &y) {
            if(b == 0) {
                x = 1, y = 0;
                return a;
            }
            ll d = exgcd(b, a % b, x, y), t;
            t = x, x = y, y = t - a / b * y;
            return d;
        }
    
        ll inv(ll a, ll m) {
            ll x, y, d = exgcd(a, m, x, y);
            if(d != 1)
                // no solution
                return -1;
            ll x0 = (x % m + m) % m;
            // solution is: x = x0
            return x0;
        }
    
        // x = r_i mod m_i
        pll crt(ll *r, ll *m, int n) {
            ll M = 1, R = 0;
            for(int i = 1; i <= n; ++i)
                M *= m[i];
            for(int i = 1; i <= n; ++i) {
                ll Mi = M / m[i], invMi = inv(Mi, m[i]);
                R = (R + qmul(r[i], qmul(Mi, invMi, M), M)) % M;
            }
            // solution is: x = R mod M
            return pll(R, M);
        }
    
    }
    

    扩展中国剩余定理

    扩展中国剩余定理不再要求模数两两互质,实际上是依次合并若干个同余方程的过程,发现矛盾则报告无解。返回合并成功后的方程 (x = R mod M) ,根据这个公式可以知道通解。在通过最小非负整数解来构造某个特解的过程中,配合倍增和同余方程来确定范围。

    验证链接:https://www.luogu.com.cn/problem/P4777

    namespace exCRT {
    
        ll qmul(ll a, ll b, ll mod) {
            ll res = 0;
            while(b) {
                if(b & 1)
                    res = (res + a) % mod;
                a = (a + a) % mod, b >>= 1;
            }
            return res;
        }
    
        ll exgcd(ll a, ll b, ll &x, ll &y) {
            if(b == 0) {
                x = 1, y = 0;
                return a;
            }
            ll d = exgcd(b, a % b, x, y), t;
            t = x, x = y, y = t - a / b * y;
            return d;
        }
    
        pll merge(ll r1, ll m1, ll r2, ll m2) {
            ll x, y, t = ((r2 - r1) % m2 + m2) % m2, d = exgcd(m1, m2, x, y);
            if(t % d != 0)
                // no solution
                return pll(-1, -1);
            ll R = (r1 + qmul(x, t / d, m2 / d) * m1), M = m1 * (m2 / d), R = (R % M + M) % M;
            // solution is: x = R mod M
            return pll(R, M);
        }
    
        // x = r_i mod m_i
        pll excrt(ll *r, ll *m, int n) {
            ll M = m[1], R = (r[1] % M + M) % M;
            for(int i = 2; i <= n; ++i) {
                pll res = merge(R, M, r[i], m[i]);
                if(res.first == -1 && res.second == -1)
                    // no solution
                    return res;
                R = res.first, M = res.second;
            }
            // solution is: x = R mod M
            return pll(R, M);
        }
    
    }
    
  • 相关阅读:
    防止sql注入的小函数 以及一些小验证
    PHP几个防SQL注入攻击自带函数区别
    redis配置文件.conf和常用配置
    redis常用命令
    redis数据类型
    redis的安装和简单操作
    yum CentOS7安装mysql
    Linux安装mysql
    firewall-cmd 常用命令
    解决linux下启动tomcat找不到jdk
  • 原文地址:https://www.cnblogs.com/purinliang/p/14045597.html
Copyright © 2011-2022 走看看