题目描述:
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). You may assume nums1 and nums2 cannot be both empty. Example 1: nums1 = [1, 3] nums2 = [2] The median is 2.0 Example 2: nums1 = [1, 2] nums2 = [3, 4] The median is (2 + 3)/2 = 2.5
解题思路:现在考虑一个更通用的问题:给定两个已经排序好的数组,找到两者所有元素中第k大的元素。假设两个数组A和B的元素个数都大于k/2,我们将A的第k/2个元素A[k/2-1]和B的第k/2个元素B[k/2-1]进行比较,有以下三种情况:
1. A[k/2-1] == B[k/2-1]
2. A[k/2-1] > B[k/2-1]
3. A[k/2-1] < B[k/2-1]
如果是A[k/2-1] < B[k/2-1]则说明A[0]到A[k/2-1]肯定在AUB的top k元素的范围内,反之则B[0]到B[k/2-1]肯定在AUB的top k元素的范围内。如果A[k/2-1] == B[k/2-1],说明第k大的元素为A[k/2-1]或B[k/2-1](这里假设排序好的数组是从小到大排列的,并且假设k是偶数。所的结论对k是奇数也是成立的)。
参考代码:
class Solution { public: double findMedianSortedArrays(const vector<int>& A, const vector<int>& B) { const int m = A.size(); const int n = B.size(); int total = m + n; if (total & 1) return find_kth(A.begin(), m, B.begin(), n, total / 2 + 1); else return (find_kth(A.begin(), m, B.begin(), n, total / 2) + find_kth(A.begin(), m, B.begin(), n, total / 2 + 1)) / 2.0; } int find_kth(std::vector<int>::const_iterator A, int m, std::vector<int>::const_iterator B, int n, int k) { //always assume that m is equal or smaller than n if (m > n) return find_kth(B, n, A, m, k); if (m == 0) return *(B + k - 1); if (k == 1) return min(*A, *B); //divide k into two parts int ia = min(k / 2, m), ib = k - ia; if (*(A + ia - 1) < *(B + ib - 1)) return find_kth(A + ia, m - ia, B, n, k - ia); else if (*(A + ia - 1) > *(B + ib - 1)) return find_kth(A, m, B + ib, n - ib, k - ib); else return A[ia - 1]; } };
运行结果:
median: 2.5