zoukankan      html  css  js  c++  java
  • VGGNet实现cifar10数据集分类

    import tensorflow as tf
    import os
    from matplotlib import pyplot as plt
    import tensorflow.keras.datasets
    from tensorflow.keras import  Model
    import numpy as np
    from tensorflow.keras.layers import Dense,Flatten,BatchNormalization,Dropout,Conv2D,Activation,MaxPool2D
    cifar10=tf.keras.datasets.cifar10
    (x_train,y_train),(x_test,y_test)=cifar10.load_data()
    x_train=x_train/255.
    x_test=x_test/255.
    
    
    class VGGNet(Model):
        def __init__(self):
            super(VGGNet, self).__init__()
            self.c1=Conv2D(filters=64,kernel_size=(3,3),strides=1,padding='same')
            self.b1=BatchNormalization()
            self.a1=Activation('relu')
            self.c2 = Conv2D(filters=64, kernel_size=(3, 3), strides=1, padding='same')
            self.b2 = BatchNormalization()
            self.a2 = Activation('relu')
            self.p2=MaxPool2D(pool_size=(2,2),strides=2,padding='same')
            self.d2=Dropout(0.2)
    
            self.c3 = Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding='same')
            self.b3 = BatchNormalization()
            self.a3 = Activation('relu')
            self.c4 = Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding='same')
            self.b4 = BatchNormalization()
            self.a4 = Activation('relu')
            self.p4 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
            self.d4 = Dropout(0.2)
    
            self.c5 = Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding='same')
            self.b5 = BatchNormalization()
            self.a5 = Activation('relu')
    
            self.c6 = Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding='same')
            self.b6 = BatchNormalization()
            self.a6 = Activation('relu')
            self.c7 = Conv2D(filters=256, kernel_size=(3, 3), strides=1, padding='same')
            self.b7 = BatchNormalization()
            self.a7 = Activation('relu')
            self.p7 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
            self.d7 = Dropout(0.2)
    
            self.c8 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b8 = BatchNormalization()
            self.a8 = Activation('relu')
    
            self.c9 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b9 = BatchNormalization()
            self.a9 = Activation('relu')
            self.c10 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b10 = BatchNormalization()
            self.a10 = Activation('relu')
            self.p10 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
            self.d10 = Dropout(0.2)
    
            self.c11 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b11 = BatchNormalization()
            self.a11 = Activation('relu')
    
            self.c12 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b12 = BatchNormalization()
            self.a12 = Activation('relu')
            self.c13 = Conv2D(filters=512, kernel_size=(3, 3), strides=1, padding='same')
            self.b13 = BatchNormalization()
            self.a13 = Activation('relu')
            self.p13 = MaxPool2D(pool_size=(2, 2), strides=2, padding='same')
            self.d13 = Dropout(0.2)
    
    
            self.flatten=Flatten()
            self.f1 = Dense(512,activation='relu')
            self.d1 = Dropout(0.2)
            self.f2 = Dense(512, activation='relu')
            self.d2 = Dropout(0.2)
            self.f3 = Dense(10, activation='softmax')
    
        def call(self,x):
    
            x = self.c1(x)
            x = self.b1(x)
            x = self.a1(x)
            x = self.c2(x)
            x = self.b2(x)
            x = self.a2(x)
            x = self.c2(x)
            x = self.d2(x)
    
            x = self.c3(x)
            x = self.b3(x)
            x = self.a3(x)
            x = self.c4(x)
            x = self.b4(x)
            x = self.a4(x)
            x = self.c4(x)
            x = self.d4(x)
    
            x = self.c5(x)
            x = self.b5(x)
            x = self.a5(x)
    
            x = self.c6(x)
            x = self.b6(x)
            x = self.a6(x)
            x = self.c7(x)
            x = self.b7(x)
            x = self.a7(x)
            x = self.c7(x)
            x = self.d7(x)
    
            x = self.c8(x)
            x = self.b8(x)
            x = self.a8(x)
    
            x = self.c9(x)
            x = self.b9(x)
            x = self.a9(x)
            x = self.c10(x)
            x = self.b10(x)
            x = self.a10(x)
            x = self.c10(x)
            x = self.d10(x)
    
            x = self.c11(x)
            x = self.b11(x)
            x = self.a11(x)
    
            x = self.c12(x)
            x = self.b12(x)
            x = self.a12(x)
            x = self.c13(x)
            x = self.b13(x)
            x = self.a13(x)
            x = self.c13(x)
            x = self.d13(x)
    
    
            x = self.flatten(x)
    
            x=self.f1(x)
            x=self.d1(x)
            x=self.f2(x)
            x=self.d2(x)
            y=self.f3(x)
            return y
    
    model=VGGNet()
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    check_save_path='./checkpoint/VGGNet.ckpt'
    if os.path.exists(check_save_path+'.index'):
        print('-------------lodel the model------------')
        model.load_weights(check_save_path)
    
    cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=check_save_path,save_best_only=True,
                                                    save_weights_only=True)
    
    history=model.fit(x_train,y_train,batch_size=128,epochs=5,validation_data=(x_test,y_test),
                      validation_freq=1,callbacks=[cp_callback])
    
    model.summary()
    
    file=open('./VGGNet_wights.txt','w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '
    ')
        file.write(str(v.shape) + '
    ')
        file.write(str(v.np()) + '
    ')
    file.close()
    
    
    ############可视化图像###############
    acc=history.history['sparse_categorical_accuracy']
    val_acc=history.history['sparse_categorical_val_accuracy']
    loss=history.history['loss']
    val_loss=history.history['val_loss']
    
    plt.subplot(1,2,1)
    plt.plot(acc)
    plt.plot(val_acc)
    plt.legend()
    
    plt.subplot(1,2,2)
    plt.plot(loss)
    plt.plot(val_loss)
    plt.legend()
    
    plt.show()

    VGGNet共有13层卷积层,3层全连接层,共16层,单次遍历需要12小时

  • 相关阅读:
    各个控件说明
    html常用
    abp.message
    ABP框架——单表实体流程
    AngularJS $http和$.ajax
    AngularJS ng-if使用
    AngularJS 多级下拉框
    AngularJS 计时器
    AngularJS table循环数据
    Python之待学习记录
  • 原文地址:https://www.cnblogs.com/python2/p/13592316.html
Copyright © 2011-2022 走看看