zoukankan      html  css  js  c++  java
  • InceptionNet实现cifar10数据集

    import tensorflow as tf
    import os
    import numpy as np
    from matplotlib import pyplot as plt
    from tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropout, Flatten, Dense, 
        GlobalAveragePooling2D
    from tensorflow.keras import Model
    
    np.set_printoptions(threshold=np.inf)
    
    cifar10 = tf.keras.datasets.cifar10
    (x_train, y_train), (x_test, y_test) = cifar10.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    
    class ConvBNRelu(Model):
        def __init__(self, ch, kernelsz=3, strides=1, padding='same'):
            super(ConvBNRelu, self).__init__()
            self.model = tf.keras.models.Sequential([
                Conv2D(ch, kernelsz, strides=strides, padding=padding),
                BatchNormalization(),
                Activation('relu')
            ])
    
        def call(self, x):
            x = self.model(x, training=False) #在training=False时,BN通过整个训练集计算均值、方差去做批归一化,training=True时,通过当前batch的均值、方差去做批归一化。推理时 training=False效果好
            return x
    
    
    class InceptionBlk(Model):
        def __init__(self, ch, strides=1):
            super(InceptionBlk, self).__init__()
            self.ch = ch
            self.strides = strides
            self.c1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
            self.c2_1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
            self.c2_2 = ConvBNRelu(ch, kernelsz=3, strides=1)
            self.c3_1 = ConvBNRelu(ch, kernelsz=1, strides=strides)
            self.c3_2 = ConvBNRelu(ch, kernelsz=5, strides=1)
            self.p4_1 = MaxPool2D(3, strides=1, padding='same')
            self.c4_2 = ConvBNRelu(ch, kernelsz=1, strides=strides)
    
        def call(self, x):
            x1 = self.c1(x)
            x2_1 = self.c2_1(x)
            x2_2 = self.c2_2(x2_1)
            x3_1 = self.c3_1(x)
            x3_2 = self.c3_2(x3_1)
            x4_1 = self.p4_1(x)
            x4_2 = self.c4_2(x4_1)
            # concat along axis=channel
            x = tf.concat([x1, x2_2, x3_2, x4_2], axis=3)
            return x
    
    
    class Inception10(Model):
        def __init__(self, num_blocks, num_classes, init_ch=16, **kwargs):
            super(Inception10, self).__init__(**kwargs)
            self.in_channels = init_ch
            self.out_channels = init_ch
            self.num_blocks = num_blocks
            self.init_ch = init_ch
            self.c1 = ConvBNRelu(init_ch)
            self.blocks = tf.keras.models.Sequential()
            for block_id in range(num_blocks):
                for layer_id in range(2):
                    if layer_id == 0:
                        block = InceptionBlk(self.out_channels, strides=2)
                    else:
                        block = InceptionBlk(self.out_channels, strides=1)
                    self.blocks.add(block)
                # enlarger out_channels per block
                self.out_channels *= 2
            self.p1 = GlobalAveragePooling2D()
            self.f1 = Dense(num_classes, activation='softmax')
    
        def call(self, x):
            x = self.c1(x)
            x = self.blocks(x)
            x = self.p1(x)
            y = self.f1(x)
            return y
    
    
    model = Inception10(num_blocks=2, num_classes=10)
    
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
                  metrics=['sparse_categorical_accuracy'])
    
    checkpoint_save_path = "./checkpoint/Inception10.ckpt"
    if os.path.exists(checkpoint_save_path + '.index'):
        print('-------------load the model-----------------')
        model.load_weights(checkpoint_save_path)
    
    cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
                                                     save_weights_only=True,
                                                     save_best_only=True)
    
    history = model.fit(x_train, y_train, batch_size=1024, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
                        callbacks=[cp_callback])
    model.summary()
    
    # print(model.trainable_variables)
    file = open('./weights.txt', 'w')
    for v in model.trainable_variables:
        file.write(str(v.name) + '
    ')
        file.write(str(v.shape) + '
    ')
        file.write(str(v.numpy()) + '
    ')
    file.close()
    
    ###############################################    show   ###############################################
    
    # 显示训练集和验证集的acc和loss曲线
    acc = history.history['sparse_categorical_accuracy']
    val_acc = history.history['val_sparse_categorical_accuracy']
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    plt.subplot(1, 2, 1)
    plt.plot(acc, label='Training Accuracy')
    plt.plot(val_acc, label='Validation Accuracy')
    plt.title('Training and Validation Accuracy')
    plt.legend()
    
    plt.subplot(1, 2, 2)
    plt.plot(loss, label='Training Loss')
    plt.plot(val_loss, label='Validation Loss')
    plt.title('Training and Validation Loss')
    plt.legend()
    plt.show()

    注意InceptionNet网络和其他网络思想

  • 相关阅读:
    数据库表结构查询SQL
    Java实现数据库备份并利用ant导入SQL脚本
    生死看淡,不服就干。SQL常见的一些优化。
    mybatis + PageHelper 实现分页
    自定义数据库连接池实现方式 MySQL
    Docker 镜像基础(三)
    Docker 镜像管理及基础命令(二)
    Docker 介绍和安装(一)
    Docker 镜像管理及基础命令(二)
    Tomcat-8 安装和配置
  • 原文地址:https://www.cnblogs.com/python2/p/13599044.html
Copyright © 2011-2022 走看看