zoukankan      html  css  js  c++  java
  • Python之collection

    1、计数器(counter)

    Counter是对字典类型的补充,用于追踪值的出现次数。

    ps:具备字典的所有功能 + 自己的功能

    c = Counter('abcdeabcdabcaba')
    print c
    输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
    ########################################################################
    ###  Counter
    ########################################################################
    
    class Counter(dict):
        '''Dict subclass for counting hashable items.  Sometimes called a bag
        or multiset.  Elements are stored as dictionary keys and their counts
        are stored as dictionary values.
    
        >>> c = Counter('abcdeabcdabcaba')  # count elements from a string
    
        >>> c.most_common(3)                # three most common elements
        [('a', 5), ('b', 4), ('c', 3)]
        >>> sorted(c)                       # list all unique elements
        ['a', 'b', 'c', 'd', 'e']
        >>> ''.join(sorted(c.elements()))   # list elements with repetitions
        'aaaaabbbbcccdde'
        >>> sum(c.values())                 # total of all counts
    
        >>> c['a']                          # count of letter 'a'
        >>> for elem in 'shazam':           # update counts from an iterable
        ...     c[elem] += 1                # by adding 1 to each element's count
        >>> c['a']                          # now there are seven 'a'
        >>> del c['b']                      # remove all 'b'
        >>> c['b']                          # now there are zero 'b'
    
        >>> d = Counter('simsalabim')       # make another counter
        >>> c.update(d)                     # add in the second counter
        >>> c['a']                          # now there are nine 'a'
    
        >>> c.clear()                       # empty the counter
        >>> c
        Counter()
    
        Note:  If a count is set to zero or reduced to zero, it will remain
        in the counter until the entry is deleted or the counter is cleared:
    
        >>> c = Counter('aaabbc')
        >>> c['b'] -= 2                     # reduce the count of 'b' by two
        >>> c.most_common()                 # 'b' is still in, but its count is zero
        [('a', 3), ('c', 1), ('b', 0)]
    
        '''
        # References:
        #   http://en.wikipedia.org/wiki/Multiset
        #   http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
        #   http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
        #   http://code.activestate.com/recipes/259174/
        #   Knuth, TAOCP Vol. II section 4.6.3
    
        def __init__(self, iterable=None, **kwds):
            '''Create a new, empty Counter object.  And if given, count elements
            from an input iterable.  Or, initialize the count from another mapping
            of elements to their counts.
    
            >>> c = Counter()                           # a new, empty counter
            >>> c = Counter('gallahad')                 # a new counter from an iterable
            >>> c = Counter({'a': 4, 'b': 2})           # a new counter from a mapping
            >>> c = Counter(a=4, b=2)                   # a new counter from keyword args
    
            '''
            super(Counter, self).__init__()
            self.update(iterable, **kwds)
    
        def __missing__(self, key):
            """ 对于不存在的元素,返回计数器为0 """
            'The count of elements not in the Counter is zero.'
            # Needed so that self[missing_item] does not raise KeyError
            return 0
    
        def most_common(self, n=None):
            """ 数量从大到写排列,获取前N个元素 """
            '''List the n most common elements and their counts from the most
            common to the least.  If n is None, then list all element counts.
    
            >>> Counter('abcdeabcdabcaba').most_common(3)
            [('a', 5), ('b', 4), ('c', 3)]
    
            '''
            # Emulate Bag.sortedByCount from Smalltalk
            if n is None:
                return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
            return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
    
        def elements(self):
            """ 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
            '''Iterator over elements repeating each as many times as its count.
    
            >>> c = Counter('ABCABC')
            >>> sorted(c.elements())
            ['A', 'A', 'B', 'B', 'C', 'C']
    
            # Knuth's example for prime factors of 1836:  2**2 * 3**3 * 17**1
            >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
            >>> product = 1
            >>> for factor in prime_factors.elements():     # loop over factors
            ...     product *= factor                       # and multiply them
            >>> product
    
            Note, if an element's count has been set to zero or is a negative
            number, elements() will ignore it.
    
            '''
            # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
            return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
    
        # Override dict methods where necessary
    
        @classmethod
        def fromkeys(cls, iterable, v=None):
            # There is no equivalent method for counters because setting v=1
            # means that no element can have a count greater than one.
            raise NotImplementedError(
                'Counter.fromkeys() is undefined.  Use Counter(iterable) instead.')
    
        def update(self, iterable=None, **kwds):
            """ 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
            '''Like dict.update() but add counts instead of replacing them.
    
            Source can be an iterable, a dictionary, or another Counter instance.
    
            >>> c = Counter('which')
            >>> c.update('witch')           # add elements from another iterable
            >>> d = Counter('watch')
            >>> c.update(d)                 # add elements from another counter
            >>> c['h']                      # four 'h' in which, witch, and watch
    
            '''
            # The regular dict.update() operation makes no sense here because the
            # replace behavior results in the some of original untouched counts
            # being mixed-in with all of the other counts for a mismash that
            # doesn't have a straight-forward interpretation in most counting
            # contexts.  Instead, we implement straight-addition.  Both the inputs
            # and outputs are allowed to contain zero and negative counts.
    
            if iterable is not None:
                if isinstance(iterable, Mapping):
                    if self:
                        self_get = self.get
                        for elem, count in iterable.iteritems():
                            self[elem] = self_get(elem, 0) + count
                    else:
                        super(Counter, self).update(iterable) # fast path when counter is empty
                else:
                    self_get = self.get
                    for elem in iterable:
                        self[elem] = self_get(elem, 0) + 1
            if kwds:
                self.update(kwds)
    
        def subtract(self, iterable=None, **kwds):
            """ 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
            '''Like dict.update() but subtracts counts instead of replacing them.
            Counts can be reduced below zero.  Both the inputs and outputs are
            allowed to contain zero and negative counts.
    
            Source can be an iterable, a dictionary, or another Counter instance.
    
            >>> c = Counter('which')
            >>> c.subtract('witch')             # subtract elements from another iterable
            >>> c.subtract(Counter('watch'))    # subtract elements from another counter
            >>> c['h']                          # 2 in which, minus 1 in witch, minus 1 in watch
            >>> c['w']                          # 1 in which, minus 1 in witch, minus 1 in watch
            -1
    
            '''
            if iterable is not None:
                self_get = self.get
                if isinstance(iterable, Mapping):
                    for elem, count in iterable.items():
                        self[elem] = self_get(elem, 0) - count
                else:
                    for elem in iterable:
                        self[elem] = self_get(elem, 0) - 1
            if kwds:
                self.subtract(kwds)
    
        def copy(self):
            """ 拷贝 """
            'Return a shallow copy.'
            return self.__class__(self)
    
        def __reduce__(self):
            """ 返回一个元组(类型,元组) """
            return self.__class__, (dict(self),)
    
        def __delitem__(self, elem):
            """ 删除元素 """
            'Like dict.__delitem__() but does not raise KeyError for missing values.'
            if elem in self:
                super(Counter, self).__delitem__(elem)
    
        def __repr__(self):
            if not self:
                return '%s()' % self.__class__.__name__
            items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
            return '%s({%s})' % (self.__class__.__name__, items)
    
        # Multiset-style mathematical operations discussed in:
        #       Knuth TAOCP Volume II section 4.6.3 exercise 19
        #       and at http://en.wikipedia.org/wiki/Multiset
        #
        # Outputs guaranteed to only include positive counts.
        #
        # To strip negative and zero counts, add-in an empty counter:
        #       c += Counter()
    
        def __add__(self, other):
            '''Add counts from two counters.
    
            >>> Counter('abbb') + Counter('bcc')
            Counter({'b': 4, 'c': 2, 'a': 1})
    
            '''
            if not isinstance(other, Counter):
                return NotImplemented
            result = Counter()
            for elem, count in self.items():
                newcount = count + other[elem]
                if newcount > 0:
                    result[elem] = newcount
            for elem, count in other.items():
                if elem not in self and count > 0:
                    result[elem] = count
            return result
    
        def __sub__(self, other):
            ''' Subtract count, but keep only results with positive counts.
    
            >>> Counter('abbbc') - Counter('bccd')
            Counter({'b': 2, 'a': 1})
    
            '''
            if not isinstance(other, Counter):
                return NotImplemented
            result = Counter()
            for elem, count in self.items():
                newcount = count - other[elem]
                if newcount > 0:
                    result[elem] = newcount
            for elem, count in other.items():
                if elem not in self and count < 0:
                    result[elem] = 0 - count
            return result
    
        def __or__(self, other):
            '''Union is the maximum of value in either of the input counters.
    
            >>> Counter('abbb') | Counter('bcc')
            Counter({'b': 3, 'c': 2, 'a': 1})
    
            '''
            if not isinstance(other, Counter):
                return NotImplemented
            result = Counter()
            for elem, count in self.items():
                other_count = other[elem]
                newcount = other_count if count < other_count else count
                if newcount > 0:
                    result[elem] = newcount
            for elem, count in other.items():
                if elem not in self and count > 0:
                    result[elem] = count
            return result
    
        def __and__(self, other):
            ''' Intersection is the minimum of corresponding counts.
    
            >>> Counter('abbb') & Counter('bcc')
            Counter({'b': 1})
    
            '''
            if not isinstance(other, Counter):
                return NotImplemented
            result = Counter()
            for elem, count in self.items():
                other_count = other[elem]
                newcount = count if count < other_count else other_count
                if newcount > 0:
                    result[elem] = newcount
            return result
    
    Counter


    2、有序字典(orderedDict )

    
    

    orderdDict是对字典类型的补充,他记住了字典元素添加的顺序

    class OrderedDict(dict):
        'Dictionary that remembers insertion order'
        # An inherited dict maps keys to values.
        # The inherited dict provides __getitem__, __len__, __contains__, and get.
        # The remaining methods are order-aware.
        # Big-O running times for all methods are the same as regular dictionaries.
    
        # The internal self.__map dict maps keys to links in a doubly linked list.
        # The circular doubly linked list starts and ends with a sentinel element.
        # The sentinel element never gets deleted (this simplifies the algorithm).
        # Each link is stored as a list of length three:  [PREV, NEXT, KEY].
    
        def __init__(self, *args, **kwds):
            '''Initialize an ordered dictionary.  The signature is the same as
            regular dictionaries, but keyword arguments are not recommended because
            their insertion order is arbitrary.
    
            '''
            if len(args) > 1:
                raise TypeError('expected at most 1 arguments, got %d' % len(args))
            try:
                self.__root
            except AttributeError:
                self.__root = root = []                     # sentinel node
                root[:] = [root, root, None]
                self.__map = {}
            self.__update(*args, **kwds)
    
        def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
            'od.__setitem__(i, y) <==> od[i]=y'
            # Setting a new item creates a new link at the end of the linked list,
            # and the inherited dictionary is updated with the new key/value pair.
            if key not in self:
                root = self.__root
                last = root[0]
                last[1] = root[0] = self.__map[key] = [last, root, key]
            return dict_setitem(self, key, value)
    
        def __delitem__(self, key, dict_delitem=dict.__delitem__):
            'od.__delitem__(y) <==> del od[y]'
            # Deleting an existing item uses self.__map to find the link which gets
            # removed by updating the links in the predecessor and successor nodes.
            dict_delitem(self, key)
            link_prev, link_next, _ = self.__map.pop(key)
            link_prev[1] = link_next                        # update link_prev[NEXT]
            link_next[0] = link_prev                        # update link_next[PREV]
    
        def __iter__(self):
            'od.__iter__() <==> iter(od)'
            # Traverse the linked list in order.
            root = self.__root
            curr = root[1]                                  # start at the first node
            while curr is not root:
                yield curr[2]                               # yield the curr[KEY]
                curr = curr[1]                              # move to next node
    
        def __reversed__(self):
            'od.__reversed__() <==> reversed(od)'
            # Traverse the linked list in reverse order.
            root = self.__root
            curr = root[0]                                  # start at the last node
            while curr is not root:
                yield curr[2]                               # yield the curr[KEY]
                curr = curr[0]                              # move to previous node
    
        def clear(self):
            'od.clear() -> None.  Remove all items from od.'
            root = self.__root
            root[:] = [root, root, None]
            self.__map.clear()
            dict.clear(self)
    
        # -- the following methods do not depend on the internal structure --
    
        def keys(self):
            'od.keys() -> list of keys in od'
            return list(self)
    
        def values(self):
            'od.values() -> list of values in od'
            return [self[key] for key in self]
    
        def items(self):
            'od.items() -> list of (key, value) pairs in od'
            return [(key, self[key]) for key in self]
    
        def iterkeys(self):
            'od.iterkeys() -> an iterator over the keys in od'
            return iter(self)
    
        def itervalues(self):
            'od.itervalues -> an iterator over the values in od'
            for k in self:
                yield self[k]
    
        def iteritems(self):
            'od.iteritems -> an iterator over the (key, value) pairs in od'
            for k in self:
                yield (k, self[k])
    
        update = MutableMapping.update
    
        __update = update # let subclasses override update without breaking __init__
    
        __marker = object()
    
        def pop(self, key, default=__marker):
            '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
            value.  If key is not found, d is returned if given, otherwise KeyError
            is raised.
    
            '''
            if key in self:
                result = self[key]
                del self[key]
                return result
            if default is self.__marker:
                raise KeyError(key)
            return default
    
        def setdefault(self, key, default=None):
            'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
            if key in self:
                return self[key]
            self[key] = default
            return default
    
        def popitem(self, last=True):
            '''od.popitem() -> (k, v), return and remove a (key, value) pair.
            Pairs are returned in LIFO order if last is true or FIFO order if false.
    
            '''
            if not self:
                raise KeyError('dictionary is empty')
            key = next(reversed(self) if last else iter(self))
            value = self.pop(key)
            return key, value
    
        def __repr__(self, _repr_running={}):
            'od.__repr__() <==> repr(od)'
            call_key = id(self), _get_ident()
            if call_key in _repr_running:
                return '...'
            _repr_running[call_key] = 1
            try:
                if not self:
                    return '%s()' % (self.__class__.__name__,)
                return '%s(%r)' % (self.__class__.__name__, self.items())
            finally:
                del _repr_running[call_key]
    
        def __reduce__(self):
            'Return state information for pickling'
            items = [[k, self[k]] for k in self]
            inst_dict = vars(self).copy()
            for k in vars(OrderedDict()):
                inst_dict.pop(k, None)
            if inst_dict:
                return (self.__class__, (items,), inst_dict)
            return self.__class__, (items,)
    
        def copy(self):
            'od.copy() -> a shallow copy of od'
            return self.__class__(self)
    
        @classmethod
        def fromkeys(cls, iterable, value=None):
            '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
            If not specified, the value defaults to None.
    
            '''
            self = cls()
            for key in iterable:
                self[key] = value
            return self
    
        def __eq__(self, other):
            '''od.__eq__(y) <==> od==y.  Comparison to another OD is order-sensitive
            while comparison to a regular mapping is order-insensitive.
    
            '''
            if isinstance(other, OrderedDict):
                return dict.__eq__(self, other) and all(_imap(_eq, self, other))
            return dict.__eq__(self, other)
    
        def __ne__(self, other):
            'od.__ne__(y) <==> od!=y'
            return not self == other
    
        # -- the following methods support python 3.x style dictionary views --
    
        def viewkeys(self):
            "od.viewkeys() -> a set-like object providing a view on od's keys"
            return KeysView(self)
    
        def viewvalues(self):
            "od.viewvalues() -> an object providing a view on od's values"
            return ValuesView(self)
    
        def viewitems(self):
            "od.viewitems() -> a set-like object providing a view on od's items"
            return ItemsView(self)
    
    OrderedDict

    3、默认字典(defaultdict) 

    问题如下:

    有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。
    即: {'k1': 大于66 , 'k2': 小于66}
    values = [11, 22, 33,44,55,66,77,88,99,90]
    
    my_dict = {}
    
    for value in  values:
        if value>66:
            if my_dict.has_key('k1'):
                my_dict['k1'].append(value)
            else:
                my_dict['k1'] = [value]
        else:
            if my_dict.has_key('k2'):
                my_dict['k2'].append(value)
            else:
                my_dict['k2'] = [value]
    
    原生字典解决方法
    from collections import defaultdict
    
    values = [11, 22, 33,44,55,66,77,88,99,90]
    
    my_dict = defaultdict(list)
    
    for value in  values:
        if value>66:
            my_dict['k1'].append(value)
        else:
            my_dict['k2'].append(value)
    
    defaultdict字典解决方法

    defaultdict是对字典的类型的补充,他默认给字典的值设置了一个类型。

    defaultdict的方法:

    class defaultdict(dict):
        """
        defaultdict(default_factory[, ...]) --> dict with default factory
        
        The default factory is called without arguments to produce
        a new value when a key is not present, in __getitem__ only.
        A defaultdict compares equal to a dict with the same items.
        All remaining arguments are treated the same as if they were
        passed to the dict constructor, including keyword arguments.
        """
        def copy(self): # real signature unknown; restored from __doc__
            """ D.copy() -> a shallow copy of D. """
            pass
    
        def __copy__(self, *args, **kwargs): # real signature unknown
            """ D.copy() -> a shallow copy of D. """
            pass
    
        def __getattribute__(self, name): # real signature unknown; restored from __doc__
            """ x.__getattribute__('name') <==> x.name """
            pass
    
        def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
            """
            defaultdict(default_factory[, ...]) --> dict with default factory
            
            The default factory is called without arguments to produce
            a new value when a key is not present, in __getitem__ only.
            A defaultdict compares equal to a dict with the same items.
            All remaining arguments are treated the same as if they were
            passed to the dict constructor, including keyword arguments.
            
            # (copied from class doc)
            """
            pass
    
        def __missing__(self, key): # real signature unknown; restored from __doc__
            """
            __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
              if self.default_factory is None: raise KeyError((key,))
              self[key] = value = self.default_factory()
              return value
            """
            pass
    
        def __reduce__(self, *args, **kwargs): # real signature unknown
            """ Return state information for pickling. """
            pass
    
        def __repr__(self): # real signature unknown; restored from __doc__
            """ x.__repr__() <==> repr(x) """
            pass
    
        default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None)  # default
        """Factory for default value called by __missing__()."""
    
    defaultdict
  • 相关阅读:
    使用软引用构建缓存(转载)
    Android的View和ViewGroup分析(转载)
    WiFiDirect功能在Android 4.0中出现
    Android 利用ViewPager、Fragment、PagerTabStrip实现多页面滑动效果(转载)
    android API之ActivityGroup 转载
    .9.png的制作
    android ScrollView的API详解
    JAVA的重写和重载
    关于dialog特殊设置,不销毁
    查看各国msn首页最简单的方法
  • 原文地址:https://www.cnblogs.com/pythonlearing/p/9745031.html
Copyright © 2011-2022 走看看