zoukankan      html  css  js  c++  java
  • 线程数量与并行应用性能相关性的测试

    一直被一个问题所困扰,在并行应用中,任务划分的粒度达到多少合适?或者说,采用多线程时,启用多少线程能够达到最佳性能?

    网上有一些资料给出了参考:

    如果是CPU密集型任务,就需要尽量压榨CPU,参考值可以设为 NCPU+1

    如果是IO密集型任务,参考值可以设置为2*NCPU

    那么,我们就使用示例程序来实地测试一下吧!

    ComputePerformanceTest.java

    import java.util.concurrent.Callable;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    
    /*
     * @author pzy
     * @version 20151006
     * @funcion test the Performance of serial and parallel compute tasks
     */
    
    public class ComputePerformanceTest {
    
        public static void main(String[] args) {    
            System.out.println("ComputePerformanceTest is running..");
            
            int processors = Runtime.getRuntime().availableProcessors();
            System.out.println(Integer.toString(processors) + " processor"
                    + (processors != 1 ? "s are " : " is ")
                    + "available");    
    
            //串行计算
            ComputeTaskManager manager = new ComputeTaskManager(20, 20);
            Long startTime = System.currentTimeMillis();
            manager.computeInSerial();
            System.out.printf("computeInSerial finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
            
            //20线程并行计算
            manager = new ComputeTaskManager(20, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(20,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
            
            //10线程并行计算
            manager = new ComputeTaskManager(10, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(10,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
    
            //4线程并行计算
            manager = new ComputeTaskManager(4, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(4,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);    
            manager.close();    
            
            //2线程并行计算
            manager = new ComputeTaskManager(2, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(2,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);    
            manager.close();
        }
    }
    
    class ComputeTaskManager {
        private long start = 1;
        private long end = 1000000000;
        private long taskNum;
        ExecutorService pool;
        
        public ComputeTaskManager(int taskNum, int pooSize) {
            this.taskNum = taskNum;
            pool = Executors.newFixedThreadPool(pooSize);
        }
        
        public void close(){
            pool.shutdown();
        }
        
        public Long computeInSerial(){
            System.out.printf("=====computeInSerial() start=====%n");
            long sum = new SumTask(start, end).sum();
            System.out.printf("=====computeInSerial() end=====%n");
            return sum;
        }
        
        public Long computeInParallel(){
            System.out.printf("=====computeInParallel(%d) start=====%n", taskNum);
            //将任务分拆为多个子任务
            long aver = (end - start + 1)/ taskNum;
            long sum = 0;
            for (int i = 0; i < taskNum; i++) {
                try {
                    long startNum = this.start + i * aver;
                    long endNum = startNum + aver - 1;
                    if(endNum > this.end)
                        endNum = this.end;    
                    sum += pool.submit(new SumTask(startNum, endNum)).get();
                    startNum = startNum + aver + 1;
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                } catch (ExecutionException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
            System.out.printf("=====computeInParallel(%d) end=====%n", taskNum);
            return sum;
        }    
    }
    
    class SumTask implements Callable<Long>{
        
        private long start;
        private long end;
        private int SUM_COUNT = 50;
        
        public SumTask(long start, long end) {
            this.start = start;
            this.end = end;    
        }
    
        public Long sum(){
            long sum = 0;
            for (int i = 0; i < SUM_COUNT; i++) {
                for (long j = start; j <= end; j++) {
                    sum += j;
                }
            }    
            return sum;
        }
    
        @Override
        public Long call() throws Exception {
            // TODO Auto-generated method stub        
            return sum();
        }
    }

    IOPerformanceTest.java

    import java.util.concurrent.Callable;
    import java.util.concurrent.CountDownLatch;
    import java.util.concurrent.ExecutionException;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.Executors;
    import java.util.concurrent.ThreadPoolExecutor;
    
    /*
     * @author pzy
     * @version 20151006
     * @funcion test the Performance of serial and parallel IO tasks
     */
    
    public class IOPerformanceTest {
    
        public static void main(String[] args) {    
            System.out.println("IOPerformanceTest is running..");
            
            //打印cpu核心数
            int processors = Runtime.getRuntime().availableProcessors();
            System.out.println(Integer.toString(processors) + " processor"
                    + (processors != 1 ? "s are " : " is ")
                    + "available");    
            
            //串行计算
            IOTaskManager manager = new IOTaskManager(20, 10);
            Long startTime = System.currentTimeMillis();
            manager.computeInSerial();
            System.out.printf("computeInSerial finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
            
            //20线程并行计算
            manager = new IOTaskManager(20, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(20,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
            
            //10线程并行计算
            manager = new IOTaskManager(10, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(10,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);
            manager.close();
    
            //4线程并行计算
            manager = new IOTaskManager(4, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(4,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);    
            manager.close();    
            
            //2线程并行计算
            manager = new IOTaskManager(2, 20);
            startTime = System.currentTimeMillis();
            manager.computeInParallel();
            System.out.printf("result of computeInParallel(2,20) finished ,costs %d milliseconds%n",System.currentTimeMillis() - startTime);    
            manager.close();
        }
    }
    
    class IOTaskManager {
        private int taskNum;
        ExecutorService pool;
        CountDownLatch countDownLatch;
    
        public IOTaskManager(int taskNum, int pooSize) {
            this.taskNum = taskNum;
            countDownLatch = new CountDownLatch(taskNum);
            pool = Executors.newFixedThreadPool(pooSize);
        }
        
        public void close(){
            pool.shutdown();
        }
        
        void computeInSerial(){
            System.out.printf("=====computeInSerial(%d) start=====%n", taskNum);
            for (int i = 0; i < taskNum; i++) {
                new IOTask(i).compute();
            }
            System.out.printf("=====computeInSerial(%d) end=====%n", taskNum);
            
        }
        
        void computeInParallel(){
            System.out.printf("=====computeInParallel(%d) start=====%n", taskNum);
            for (int i = 0; i < taskNum; i++) {
                pool.execute(new IOTask(i, countDownLatch));
            }    
            try {
                countDownLatch.await();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            System.out.printf("=====computeInParallel(%d) end=====%n", taskNum);
        }    
    }
    
    class IOTask implements Runnable{
    
        int num;
        CountDownLatch countDownLatch;
        
        public IOTask(int num) {
            this.num = num;
        }
        
        public IOTask(int num, CountDownLatch countDownLatch) {
            this.num = num;
            this.countDownLatch = countDownLatch;
        }
        
        public void compute(){
            
            try {
                Thread.currentThread();
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }    
            if(countDownLatch != null){
                
                long count = countDownLatch.getCount() - 1;
                //System.out.printf("[task %d] countDownLatch is %d%n", num, count);
                System.out.printf("task %d has finished %n", num);
                countDownLatch.countDown();
            }
        }
        
        @Override
        public void run() {
            // TODO Auto-generated method stub
            compute();
        }
    
    
    }

    测试环境:

    PC1:联想Y450/INTEL CORE2 T6500 双核2线程/UBUNTU 14.04 64bit

    PC2:联想G50-70/INTEL CORE I7-4510U 双核4线程/WIN8.1 64bit

    测试过程:

    在两台PC上分别运行测试程序,并统计性能数据,结果如下:

     《未完待续》

  • 相关阅读:
    过滤textarea
    vue引用jquery
    vue_ajax插件Axios
    VeeValidate
    mongodb
    WEBGL实现--three.js笔记整理
    My SQLworkbench问题总结
    vue遇到的问题
    MYSQL使用笔记
    vue笔记
  • 原文地址:https://www.cnblogs.com/pzy4447/p/4857903.html
Copyright © 2011-2022 走看看