zoukankan      html  css  js  c++  java
  • TensorFlow-卷积

    卷积:

    conv2d (

       input,

       filter,

       strides,

       padding,

       use_cudnn_on_gpu=True,

       data_format='NHWC',

       name=None

    )

    参数名

    必选

    类型

    说明

    input

    tensor

    是一个 4 维的 tensor,即 [ batch, in_height, in_width, in_channels ](若 input 是图像,[ 训练时一个 batch 的图片数量, 图片高度, 图片宽度, 图像通道数 ]

    filter

    tensor

    是一个 4 维的 tensor,即 [ filter_height, filter_width, in_channels, out_channels ](若 input 是图像,[ 卷积核的高度,卷积核的宽度,图像通道数,卷积核个数 ],filter in_channels 必须和 input in_channels 相等

    strides

    列表

    长度为 4 list,卷积时候在 input 上每一维的步长,一般 strides[0] = strides[3] = 1

    padding

    string

    只能为 " VALID "" SAME " 中之一,这个值决定了不同的卷积方式。VALID 丢弃方式;SAME:补全方式

    use_cudnn_on_gpu

    bool

    是否使用 cudnn 加速,默认为 true

    data_format

    string

    只能是 " NHWC ", " NCHW ",默认 " NHWC "

    name

    string

    运算名称

     实例代码:

    import tensorflow as tf
    
    a = tf.constant([1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,1,1,0,0,1,1,0,0],
    
      dtype=tf.float32,shape=[1,5,5,1])
    
    b = tf.constant([1,0,1,0,1,0,1,0,1],
    
      dtype=tf.float32,shape=[3,3,1,1])
    
    c = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1], padding='VALID')
    
    d = tf.nn.conv2d(a,b,strides=[1, 2, 2, 1], padding='SAME')
    
    with tf.Session() as sess:
    
        print ("c shape:")
    
        print (c.shape)
    
        print ("c value:")
    
        print (sess.run(c))
    
        print ("d shape:")
    
        print (d.shape)
    
        print ("d value:")
    
    print (sess.run(d))

    不同padding参数的不通运行方式与结果:

    实验来源于 腾讯云 - 开发者实验室 中TensorFlow API的相关实验;

    有意思的是,上述实验结果与给出的参考结果完全不同,有感兴趣的好同志不妨试试看到底是谁出错了。

  • 相关阅读:
    webpack打包提示: Uncaught Error: Cannot find module 'strip-ansi'
    CentOS 7.6 内网穿透服务lanproxy部署
    《这是全网最硬核redis总结,谁赞成,谁反对?》六万字大合集
    网络监控解决方案及拓扑图
    漫画:什么是 “混合云”?
    听说过Paas、Saas和Iaas,那你听说过Apaas吗?
    Squid设置用户名密码
    别再售卖 5块钱 的 Win10 激活码了,后果很严重
    Jackson 实体转Json、Json转实体
    Spring
  • 原文地址:https://www.cnblogs.com/qdhotel/p/9559049.html
Copyright © 2011-2022 走看看