HashMap的实现中主要维护一个数组,发生冲突通过链表来解决,链表插入类似于头插法
LinkedHashMap继承自HashMap,在hash的基础上,又维护了一个链表,这个链表是带头结点的双向循环链表,需要注意的链表的元素都是hash里面的元素,链表仅仅是在hash的基础上用指针将hash中的节点连接了起来
LruCache是android的utils包里面的一个类,用来实现缓存防止OOM的一个工具类,用途非常广泛。
关于LRU算法:Least Recently Used最近最少使用算法,在操作系统中,对内存的访问满足局部性原理,于是LRU用在缺页中断发生时的置换算法,将内存中的最近最长未使用的页面置换到磁盘,可以实现的方式可以为维护一个链表,当访问一个页面是,将该页面移动至表头(尾),发生缺页时取链表最后(前)的页面置换,这样存在问题是读取某个页面的复杂度太高,于是可以考虑将其进行hash,这样读取速度会提高,于是用到了LinkedHashMap这种数据结构。
android实现的LruCache类主要使用来进行内存缓存的,维护所用资源的强引用,当内存超过设定的缓存值时,将好久未使用的资源从内存删除。
LruCache的实现中在缓存的值达到最大值时采用的方法是,循环迭代从链表中取eldest的元素进行删除,知道占用的控件小于最大的缓存值。LinkedHashMap中提供的removeEldestEntry函数可以简单实现LRU的功能,但不能很好的满足一些场景,因为里面存放的元素的大小不总是大小一致的,或者说不仅仅是以缓存数据的个数来看的。下面基本上没有太多的文字,所有的解释都详细的列在代码里面
HashMap
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/util/HashMap.java
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable{ // 默认初始容量16 static final int DEFAULT_INITIAL_CAPACITY = 16; // 最大容量2^30 static final int MAXIMUM_CAPACITY = 1 << 30; // 默认加载因子 static final float DEFAULT_LOAD_FACTOR = 0.75f; // hash映射的数组槽 transient Entry[] table; // 元素个数 transient int size; // 阈值 = 加载因子 * 容量 int threshold; // 加载因子 final float loadFactor; // 修改次数,判断迭代期间容器被修改,不然抛出ConcurrentModificationException transient int modCount; public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); // 参数调整 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); // 找到大于initialCapacity的最小的2次幂 int capacity = 1; while (capacity < initialCapacity) capacity <<= 1; this.loadFactor = loadFactor; // 设置阈值 threshold = (int)(capacity * loadFactor); // 定义数组,大小为capacity table = new Entry[capacity]; // 这里是空的实现,实际让其子类覆写该方法 init(); } public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } // 默认情况下默认的加载因子,默认的容量16 public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR); table = new Entry[DEFAULT_INITIAL_CAPACITY]; init(); } // 从已存在的Map创建HashMap public HashMap(Map<? extends K, ? extends V> m) { // 容量为Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,DEFAULT_INITIAL_CAPACITY),默认的加载因子 this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1, DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR); // 遍历m将其元素添加到hashmap中 putAllForCreate(m); } void init() { } // hash算法 // 可以将1变的松散,可以减少冲突 static int hash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } // 根据hash值获得在我们维护的数组的索引 // 即取hash值的小于length的部分,这样才能将其限定在数组大小的范围里面,这样的处理也会带来冲突 static int indexFor(int h, int length) { return h & (length-1); } public int size() { return size; } public boolean isEmpty() { return size == 0; } // 根据键获取值 public V get(Object key) { if (key == null) return getForNullKey(); int hash = hash(key.hashCode()); for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } return null; } // 键为null的Entry都放在第0个槽中,相当于null经过hash后为0 private V getForNullKey() { for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) return e.value; } return null; } public boolean containsKey(Object key) { return getEntry(key) != null; } // 返回对应键的Entry,若不存在返回null final Entry<K,V> getEntry(Object key) { // 计算key的hash值 int hash = (key == null) ? 0 : hash(key.hashCode()); // 根据hash值获取其存放的槽,即indexFor函数的作用 // 遍历这个槽上的链表 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; // hash值一样且键一样(同一个内存地址或者值相同)即返回。 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } return null; } // 添加键值对 public V put(K key, V value) { // 如果键为null,那么存放在第0个槽上 if (key == null) return putForNullKey(value); // 获得键的hash值 int hash = hash(key.hashCode()); // 根据hash值得到保存在我们维护的数组中的那个下标处 int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { // 已存在,修改 V oldValue = e.value; e.value = value; e.recordAccess(this); // 将旧的值返回 return oldValue; } } modCount++; // 不存在则添加 addEntry(hash, key, value, i); return null; } // 添加键位null的键值对 private V putForNullKey(V value) { // 键位null的放在第0个槽 for (Entry<K,V> e = table[0]; e != null; e = e.next) { if (e.key == null) { // 已存在则替换 V oldValue = e.value; e.value = value; // 被子类覆盖 e.recordAccess(this); return oldValue; } } modCount++; // 不存在,添加 addEntry(0, null, value, 0); return null; } // 和put类似,用在构造函数、clone private void putForCreate(K key, V value) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { e.value = value; return; } } createEntry(hash, key, value, i); } // 遍历map添加到新建的hashmap中 private void putAllForCreate(Map<? extends K, ? extends V> m) { for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) putForCreate(e.getKey(), e.getValue()); } // 扩容 void resize(int newCapacity) { Entry[] oldTable = table; int oldCapacity = oldTable.length; // 旧的容量已经达到最大了,调整阈值即可 if (oldCapacity == MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return; } // 用新的容量创建新数组 Entry[] newTable = new Entry[newCapacity]; // 并将原数组里面的hash表全部搬移到新的数组槽中 transfer(newTable); // 将维护的数组引用重新赋值 table = newTable; // 调整阈值 threshold = (int)(newCapacity * loadFactor); } // 将原数组table里面的hash表全部搬移到新的数组槽中填充newTable void transfer(Entry[] newTable) { Entry[] src = table; int newCapacity = newTable.length; // 遍历数组的每个槽,每个槽中在一次遍历链表 for (int j = 0; j < src.length; j++) { Entry<K,V> e = src[j]; if (e != null) { src[j] = null; do { Entry<K,V> next = e.next; int i = indexFor(e.hash, newCapacity); e.next = newTable[i]; newTable[i] = e; e = next; } while (e != null); } } } // public void putAll(Map<? extends K, ? extends V> m) { // map元素个数为0,什么也不用做 int numKeysToBeAdded = m.size(); if (numKeysToBeAdded == 0) return; // 如果待复制的元素个数大于阈值,需要扩容 if (numKeysToBeAdded > threshold) { // 目标容量为满足当前设置的加载因子情况下的容量 int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1); // 参数调整 if (targetCapacity > MAXIMUM_CAPACITY) targetCapacity = MAXIMUM_CAPACITY; int newCapacity = table.length; // 找到大于targetCapacity的最小2的n次幂 while (newCapacity < targetCapacity) newCapacity <<= 1; if (newCapacity > table.length) // 扩容为新的容量 resize(newCapacity); } for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) put(e.getKey(), e.getValue()); } public V remove(Object key) { Entry<K,V> e = removeEntryForKey(key); return (e == null ? null : e.value); } // 移除key所对应的键值对 // 和removeMapping类似,只是在判断相等时有点区别 final Entry<K,V> removeEntryForKey(Object key) { int hash = (key == null) ? 0 : hash(key.hashCode()); int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; Object k; if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) { modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; // 依然在删除该键值对时调用,留给LinkedHashMap,因为可能会在访问hashmap时重新整理链表的指向关系 e.recordRemoval(this); return e; } prev = e; e = next; } return e; } // 移除键值对 final Entry<K,V> removeMapping(Object o) { // 传递参数不是Entry的子类,什么也不做 if (!(o instanceof Map.Entry)) return null; Map.Entry<K,V> entry = (Map.Entry<K,V>) o; Object key = entry.getKey(); // 获取要删除的键值对的键的哈希值 int hash = (key == null) ? 0 : hash(key.hashCode()); // 根据hash值得到保存在我们维护的数组中的那个下标处 int i = indexFor(hash, table.length); Entry<K,V> prev = table[i]; Entry<K,V> e = prev; while (e != null) { Entry<K,V> next = e.next; if (e.hash == hash && e.equals(entry)) { // hash值相同并且entry内容一样,即找到了 modCount++; size--; if (prev == e) table[i] = next; else prev.next = next; // 空的实现,给LinkedHashMap实现,在删除键值对后执行 e.recordRemoval(this); return e; } prev = e; e = next; } return e; } public void clear() { modCount++; Entry[] tab = table; for (int i = 0; i < tab.length; i++) tab[i] = null; size = 0; } // 判断是否包含值为value的键值对 public boolean containsValue(Object value) { if (value == null) return containsNullValue(); Entry[] tab = table; for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (value.equals(e.value)) return true; return false; } // 判断是否有值为null的键值对 private boolean containsNullValue() { Entry[] tab = table; // 依次迭代数组和每个数组槽所对应的链表 for (int i = 0; i < tab.length ; i++) for (Entry e = tab[i] ; e != null ; e = e.next) if (e.value == null) return true; return false; } public Object clone() { HashMap<K,V> result = null; try { result = (HashMap<K,V>)super.clone(); } catch (CloneNotSupportedException e) { // assert false; } result.table = new Entry[table.length]; result.entrySet = null; result.modCount = 0; result.size = 0; result.init(); result.putAllForCreate(this); return result; } // hashmap的底层节点结构 static class Entry<K,V> implements Map.Entry<K,V> { final K key; V value; Entry<K,V> next; final int hash; Entry(int h, K k, V v, Entry<K,V> n) { value = v; next = n; key = k; hash = h; } public final K getKey() { return key; } public final V getValue() { return value; } public final V setValue(V newValue) { V oldValue = value; value = newValue; return oldValue; } public final boolean equals(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry e = (Map.Entry)o; Object k1 = getKey(); Object k2 = e.getKey(); if (k1 == k2 || (k1 != null && k1.equals(k2))) { Object v1 = getValue(); Object v2 = e.getValue(); if (v1 == v2 || (v1 != null && v1.equals(v2))) return true; } return false; } public final int hashCode() { return (key==null ? 0 : key.hashCode()) ^ (value==null ? 0 : value.hashCode()); } public final String toString() { return getKey() + "=" + getValue(); } /*******两个空的方法,分别在添加和删除时调用,用以子类实现访问该容器时做一些其他操作*******/ void recordAccess(HashMap<K,V> m) { } void recordRemoval(HashMap<K,V> m) { } } // 添加一个Entry到bucketIndex槽的位置 void addEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; // 下面这句简单的表述实际上创建了一个Entry节点,下一个节点是e // 也就是说数组索引所在位置,然后在调整数组索引处为新创建的节点,即链表的头插法 table[bucketIndex] = new Entry<>(hash, key, value, e); // 元素个数超过了阈值,进行扩容为原来的两倍 if (size++ >= threshold) resize(2 * table.length); } // 逻辑和addEntry一模一样,只是少了扩容的判断,该函数用在构造函数里拷贝另一个map的值 // 此前已经调整了容量,因此不会出现扩容的情况 void createEntry(int hash, K key, V value, int bucketIndex) { Entry<K,V> e = table[bucketIndex]; table[bucketIndex] = new Entry<>(hash, key, value, e); size++; } // 迭代器部分 private abstract class HashIterator<E> implements Iterator<E> { Entry<K,V> next; // next entry to return // 迭代器的fast-fail机制,迭代期间不允许修改容器 int expectedModCount; // For fast-fail int index; // current slot Entry<K,V> current; // current entry HashIterator() { expectedModCount = modCount; if (size > 0) { // advance to first entry Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } } public final boolean hasNext() { return next != null; } final Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); Entry<K,V> e = next; if (e == null) throw new NoSuchElementException(); if ((next = e.next) == null) { Entry[] t = table; while (index < t.length && (next = t[index++]) == null) ; } current = e; return e; } public void remove() { if (current == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); Object k = current.key; current = null; HashMap.this.removeEntryForKey(k); expectedModCount = modCount; } } private final class ValueIterator extends HashIterator<V> { public V next() { return nextEntry().value; } } private final class KeyIterator extends HashIterator<K> { public K next() { return nextEntry().getKey(); } } private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // Subclass overrides these to alter behavior of views' iterator() method Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // Views // hasp里面的entry所对应的Set private transient Set<Map.Entry<K,V>> entrySet = null; // 键对应的Set public Set<K> keySet() { Set<K> ks = keySet; return (ks != null ? ks : (keySet = new KeySet())); } private final class KeySet extends AbstractSet<K> { public Iterator<K> iterator() { return newKeyIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsKey(o); } public boolean remove(Object o) { return HashMap.this.removeEntryForKey(o) != null; } public void clear() { HashMap.this.clear(); } } public Collection<V> values() { Collection<V> vs = values; return (vs != null ? vs : (values = new Values())); } // 值的集合 private final class Values extends AbstractCollection<V> { public Iterator<V> iterator() { return newValueIterator(); } public int size() { return size; } public boolean contains(Object o) { return containsValue(o); } public void clear() { HashMap.this.clear(); } } public Set<Map.Entry<K,V>> entrySet() { return entrySet0(); } private Set<Map.Entry<K,V>> entrySet0() { Set<Map.Entry<K,V>> es = entrySet; return es != null ? es : (entrySet = new EntrySet()); } private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { public Iterator<Map.Entry<K,V>> iterator() { return newEntryIterator(); } public boolean contains(Object o) { if (!(o instanceof Map.Entry)) return false; Map.Entry<K,V> e = (Map.Entry<K,V>) o; Entry<K,V> candidate = getEntry(e.getKey()); return candidate != null && candidate.equals(e); } public boolean remove(Object o) { return removeMapping(o) != null; } public int size() { return size; } public void clear() { HashMap.this.clear(); } } // 序列化部分 private void writeObject(java.io.ObjectOutputStream s) throws IOException { Iterator<Map.Entry<K,V>> i = (size > 0) ? entrySet0().iterator() : null; // Write out the threshold, loadfactor, and any hidden stuff s.defaultWriteObject(); // Write out number of buckets s.writeInt(table.length); // Write out size (number of Mappings) s.writeInt(size); // Write out keys and values (alternating) if (i != null) { while (i.hasNext()) { Map.Entry<K,V> e = i.next(); s.writeObject(e.getKey()); s.writeObject(e.getValue()); } } } private static final long serialVersionUID = 362498820763181265L; /** * Reconstitute the <tt>HashMap</tt> instance from a stream (i.e., * deserialize it). */ private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException { // Read in the threshold, loadfactor, and any hidden stuff s.defaultReadObject(); // Read in number of buckets and allocate the bucket array; int numBuckets = s.readInt(); table = new Entry[numBuckets]; init(); // Give subclass a chance to do its thing. // Read in size (number of Mappings) int size = s.readInt(); // Read the keys and values, and put the mappings in the HashMap for (int i=0; i<size; i++) { K key = (K) s.readObject(); V value = (V) s.readObject(); putForCreate(key, value); } } // These methods are used when serializing HashSets int capacity() { return table.length; } float loadFactor() { return loadFactor; } }
LinkedHashMap
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>{ private static final long serialVersionUID = 3801124242820219131L; // 带头结点的双向循环链表 的头 private transient Entry<K,V> header; // 取值代表使用的方式:false链表按照添加顺序组织,true按照使用顺序组织 private final boolean accessOrder; // 在构造方法中accessOrder均被初始化为false public LinkedHashMap(int initialCapacity, float loadFactor) { super(initialCapacity, loadFactor); accessOrder = false; } public LinkedHashMap(int initialCapacity) { super(initialCapacity); accessOrder = false; } public LinkedHashMap() { super(); accessOrder = false; } public LinkedHashMap(Map<? extends K, ? extends V> m) { super(m); accessOrder = false; } public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } // 复写父类的init方法,该方法在父类的构造方法里面调用 void init() { // 初始化链表头结点header // 该头结点数字无意义。 header = new Entry<>(-1, null, null, null); // 双向循环链表 header.before = header.after = header; } // hashmap里面的该函数的意义是:将原数组table里面的hash表全部搬移到新的数组槽中填充newTable // 由于已经将所有元素用链表连起来了所以是用链表来赋值更加快速 // void transfer(HashMap.Entry[] newTable) { int newCapacity = newTable.length; for (Entry<K,V> e = header.after; e != header; e = e.after) { int index = indexFor(e.hash, newCapacity); e.next = newTable[index]; newTable[index] = e; } } // 判断是否含有某个value // 直接遍历链表会有更好的时间复杂度 public boolean containsValue(Object value) { // Overridden to take advantage of faster iterator if (value==null) { for (Entry e = header.after; e != header; e = e.after) if (e.value==null) return true; } else { for (Entry e = header.after; e != header; e = e.after) if (value.equals(e.value)) return true; } return false; } public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); if (e == null) return null; // 访问即有可能要改变他在链表中的位置 e.recordAccess(this); return e.value; } public void clear() { super.clear(); header.before = header.after = header; } // linkedHashMap的节点 private static class Entry<K,V> extends HashMap.Entry<K,V> { // 比起hashmap的节点多了两个指针,一个指向前一个节点一个指向后一个节点 Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); } // 从链表中移除本身节点,仅仅指的是修改指针指向 private void remove() { before.after = after; after.before = before; } // 从链表中添加本节点至existingEntry的前面 private void addBefore(Entry<K,V> existingEntry) { after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } // 覆盖父类的方法 void recordAccess(HashMap<K,V> m) { LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; // 如果accessOrder为false什么都不做 if (lm.accessOrder) { lm.modCount++; // 从链表中移除 remove(); // 将该节点添加到链表header的前面,也就是将其添加到链表末尾(header不变) addBefore(lm.header); //前两步其实就是移动该节点到连飙头,因为他刚被访问过 } } // 覆盖父类的方法,删除键值对时同时从链表中移除 void recordRemoval(HashMap<K,V> m) { remove(); } } // 迭代器部分 private abstract class LinkedHashIterator<T> implements Iterator<T> { Entry<K,V> nextEntry = header.after; Entry<K,V> lastReturned = null; int expectedModCount = modCount; public boolean hasNext() { return nextEntry != header; } public void remove() { if (lastReturned == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); LinkedHashMap.this.remove(lastReturned.key); lastReturned = null; expectedModCount = modCount; } Entry<K,V> nextEntry() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (nextEntry == header) throw new NoSuchElementException(); Entry<K,V> e = lastReturned = nextEntry; nextEntry = e.after; return e; } } private class KeyIterator extends LinkedHashIterator<K> { public K next() { return nextEntry().getKey(); } } private class ValueIterator extends LinkedHashIterator<V> { public V next() { return nextEntry().value; } } private class EntryIterator extends LinkedHashIterator<Map.Entry<K,V>> { public Map.Entry<K,V> next() { return nextEntry(); } } // These Overrides alter the behavior of superclass view iterator() methods Iterator<K> newKeyIterator() { return new KeyIterator(); } Iterator<V> newValueIterator() { return new ValueIterator(); } Iterator<Map.Entry<K,V>> newEntryIterator() { return new EntryIterator(); } // 添加键值对 void addEntry(int hash, K key, V value, int bucketIndex) { createEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed, else grow capacity if appropriate Entry<K,V> eldest = header.after; // 判断最旧的,也就是在链表头部的节点是否需要被删除 if (removeEldestEntry(eldest)) { removeEntryForKey(eldest.key); } else { if (size >= threshold) resize(2 * table.length); } } // 比起hashmap中的createEntry方法,增加了修改链表 void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<>(hash, key, value, old); table[bucketIndex] = e; // 添加一个键值对时,总要将其链接到维护的链表结尾 e.addBefore(header); size++; } /******LinkedHashMap暴露的方法,可以用起来实现LRU算法*****/ protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; } }
LruCache
public class LruCache<K, V> { // LRC算法底层由LinkedHashMap实现 private final LinkedHashMap<K, V> map; // 缓存的数量大小,可以使元素个数、字节数等等任何想要的 private int size; // 缓存的最大值 private int maxSize; private int putCount; private int createCount; // 由于缓存空间满了被逐出的次数 private int evictionCount; // 从缓存取命中次数 private int hitCount; // 为在缓存中找到的次数,即失败次数 private int missCount; public LruCache(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } this.maxSize = maxSize; this.map = new LinkedHashMap<K, V>(0, 0.75f, true); } // public void resize(int maxSize) { if (maxSize <= 0) { throw new IllegalArgumentException("maxSize <= 0"); } synchronized (this) { this.maxSize = maxSize; } trimToSize(maxSize); } // public final V get(K key) { if (key == null) { // 不允许出现null的键和HashMap不一样 throw new NullPointerException("key == null"); } V mapValue; synchronized (this) { mapValue = map.get(key); if (mapValue != null) { // 每get成功一次hitCount就自加一次,表示命中次数 hitCount++; // 如果该键对应的值存在,返回之。 return mapValue; } missCount++; } // 否则,创建该键值对,默认值为null V createdValue = create(key); if (createdValue == null) { return null; } synchronized (this) { createCount++; // 将创建的value添加到map mapValue = map.put(key, createdValue); if (mapValue != null) { // mapValue部位空,表示本线程在put之前已经被别的线程put了一个值,即产生了冲突 // 此时我们扔掉刚创建的value,而是使用其他地方产生的value map.put(key, mapValue); } else { // 将其放进map中的同时缓存的size增加 size += safeSizeOf(key, createdValue); } } if (mapValue != null) { entryRemoved(false, key, createdValue, mapValue); return mapValue; } else { // 根据maxSize修改map,因为有可能由于此次的put操作使得容量超过最大值,具体的修改方式在子函数中 trimToSize(maxSize); return createdValue; } } // 和get基本一样 public final V put(K key, V value) { if (key == null || value == null) { throw new NullPointerException("key == null || value == null"); } V previous; synchronized (this) { putCount++; size += safeSizeOf(key, value); previous = map.put(key, value); if (previous != null) { // 返回值部位null,说明之前该键对应的有值,即使替换,因此占用空间减去之前元素 size -= safeSizeOf(key, previous); } } if (previous != null) { // 移除元素时调用 entryRemoved(false, key, previous, value); } trimToSize(maxSize); return previous; } // 根据maxSize增删map private void trimToSize(int maxSize) { while (true) { K key; V value; synchronized (this) { if (size < 0 || (map.isEmpty() && size != 0)) { throw new IllegalStateException(getClass().getName() + ".sizeOf() is reporting inconsistent results!"); } // 当前占用的空间小于最大空间时跳出 if (size <= maxSize) { break; } // 否则,取出最近最长未使用的元素,也就是链表最前面的一个 // v5.0.1版本的utils包提供的感觉有问题。 /*Map.Entry<K, V> toEvict = null; for (Map.Entry<K, V> entry : map.entrySet()) { // 循环直到最后一个??? toEvict = entry; } if (toEvict == null) { break; } */ // V4 包里面的实现https://github.com/android/platform_frameworks_support/blob/master/v4/java/android/support/v4/util/LruCache.java Map.Entry<K, V> toEvict = map.entrySet().iterator().next(); // 然而google已经提供的LinkedHashMap中就有一个函数获得eldest的元素,于是有些版本()4.4.2的写法比较好理解 key = toEvict.getKey(); value = toEvict.getValue(); // 移除该元素 map.remove(key); // 并将占用空间减少 size -= safeSizeOf(key, value); evictionCount++; } entryRemoved(true, key, value, null); } } /** * Removes the entry for {@code key} if it exists. * * @return the previous value mapped by {@code key}. */ public final V remove(K key) { if (key == null) { throw new NullPointerException("key == null"); } V previous; synchronized (this) { previous = map.remove(key); if (previous != null) { size -= safeSizeOf(key, previous); } } if (previous != null) { entryRemoved(false, key, previous, null); } return previous; } // true if the entry is being removed to make space, false if the removal was caused by a put or remove. /****** 可以覆盖进行其他操作 ******/ protected void entryRemoved(boolean evicted, K key, V oldValue, V newValue) {} // 当需要的元素不存在时执行,可以自行覆盖 protected V create(K key) { return null; } // 返回一个值表示占用的空间,这里做了参数检查 private int safeSizeOf(K key, V value) { int result = sizeOf(key, value); if (result < 0) { throw new IllegalStateException("Negative size: " + key + "=" + value); } return result; } // 返回一个值表示占用的空间 /****** 需要覆盖对不同的元素(键值对)进行不同的处理 ******/ protected int sizeOf(K key, V value) { return 1; } // 逐出所有的元素,参数为-1,只要里面还有元素就会大于-1,于是要全部移除 public final void evictAll() { trimToSize(-1); // -1 will evict 0-sized elements } public synchronized final int size() { return size; } public synchronized final int maxSize() { return maxSize; } public synchronized final int hitCount() { return hitCount; } public synchronized final int missCount() { return missCount; } public synchronized final int createCount() { return createCount; } public synchronized final int putCount() { return putCount; } public synchronized final int evictionCount() { return evictionCount; } public synchronized final Map<K, V> snapshot() { return new LinkedHashMap<K, V>(map); } @Override public synchronized final String toString() { int accesses = hitCount + missCount; int hitPercent = accesses != 0 ? (100 * hitCount / accesses) : 0; return String.format("LruCache[maxSize=%d,hits=%d,misses=%d,hitRate=%d%%]", maxSize, hitCount, missCount, hitPercent); } }
android 4.4.2中的LinkedHashMap直接提供了获得最旧元素的方法
/** * Returns the eldest entry in the map, or {@code null} if the map is empty. * @hide */ public Entry<K, V> eldest() { LinkedEntry<K, V> eldest = header.nxt; return eldest != header ? eldest : null; }
上面提到的HashMap和LinkedHashMap在jdk的不同版本变化较大,并且和android包中的实现也有一些差异。
以上。
碎觉!