zoukankan      html  css  js  c++  java
  • Python+OpenCV图像处理之图像二值化

    在数字图像处理中,二值图像占有非常重要的地位,图像的二值化使图像中数据量大为减少,从而能凸显出目标的轮廓。

    该函数的阈值操作属于像素级的操作,在灰度图中,每个像素都对应一个灰度值(0~255,0黑、255白),我们将阈值函数 threshold() 应用于图像,图像的灰度值与阈值进行比较,从而实现二值化处理,目的是滤除太大或太小值像素、消除噪声,从而从灰度图中获取二值图像(将图像的灰度值设置为0或255),实现增强整个图像呈现更为明显的黑白效果,同时也大大减少了数据量。

    python实现

    import cv2
    import numpy as np
    
    
    # 全局阈值
    def threshold_demo(image):
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        # ret, binary = cv2.threshold(gray,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
        # ret, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_TRIANGLE)
        # ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_TRUNC)
        ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
        print("阈值:", ret)
        cv2.imshow("binary", binary)
    
    
    # 局部阈值
    def local_threshold(image):
        gray = cv2.cvtColor(image,cv2.COLOR_BGRA2GRAY)
        # binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,25,10)
        binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 25, 10)
        cv2.imshow("binary ", binary)
    
    
    def custom_threshold(image):
        gray = cv2.cvtColor(image,cv2.COLOR_BGRA2GRAY)
        h, w = gray.shape[:2]
        m = np.reshape(gray, [1, w*h])
        mean = m.sum()/(w*h)
        # binary = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,25,10)
        ret, binary = cv2.threshold(gray, mean, 255, cv2.THRESH_BINARY)
        cv2.imshow("binary ", binary)
    
    
    if __name__ == "__main__":
        img = cv2.imread("image/img1.jpg")
        cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE)
        cv2.imshow("input image", img)
        custom_threshold(img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

    全局阈值函数运行结果

    局部阈值函数运行结果

    (一)全局阈值函数cv2.threshold(src, thresh, maxval, type[, dst]) -> retval, dst

    参数: src - 输入数组/图像(多通道,8位或32位浮点)

         thresh - 阈值

         maxval - 最大值,与#THRESH_BINARY和#THRESH_BINARY_INV阈值类型一起使用的最大值(maximum value)

         type - 阈值类型

         dst - 输出数组/图像(与src相同大小和类型以及相同通道数的数组/图像)。

    此外,特殊值#THRESH_OTSU或#THRESH_TRIANGLE可以与上述值之一组合。 在这些情况下,函数使用Otsu或Triangle算法确定最佳阈值,并使用它而不是指定的阈值。

    返回值:retval - 阈值 thresh    

                  dst - 经函数处理后的图像 image

    阈值类型

    1)二进制阈值化   THRESH_BINARY

    2) 反二进制阈值化THRESH_BINARY_INV 

    3)截断阈值化 THRESH_TRUNC

    4) 阈值化为0  THRESH_TOZERO

    5) 反阈值化为0 THRESH_TOZERO_INV

      

    (二)局部阈值函数cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst

    参数:src-输入图像(8位单通道图像)

         maxValue-使用 THRESH_BINARY 和 THRESH_BINARY_INV 的最大值.

         adaptiveMethod-自适应阈值算法,平均 (ADAPTIVE_THRESH_MEAN_C)或高斯(ADAPTIVE_THRESH_GAUSSIAN_C)

         thresholdType-阈值类型,必须为THRESH_BINARY或THRESH_BINARY_INV的阈值类型

         blockSize-块大小(奇数且大于1 )

         C-常数,从平均值或加权平均值中减去的数。 通常情况下,这是正值,但也可能为零或负值

    返回值:dst-经函数处理过的图像

  • 相关阅读:
    [leetcode-136-Single Number]
    [leetcode-2-Add Two Numbers]
    [leetcode-150-Evaluate Reverse Polish Notation]
    [leetcode-1-Two Sum]
    DataTable数据分页
    ToList和ToDataTable(其中也有反射的知识)
    c#解决Nullable类型的转换 (包含DataContract的序列化和反序列化以及 该例子应用在反射属性setvalue的时候有用)
    ADO.NET DataTable的复制(clone)
    OracleBulkCopy
    LIst和table的转换
  • 原文地址:https://www.cnblogs.com/qianxia/p/11093722.html
Copyright © 2011-2022 走看看