zoukankan      html  css  js  c++  java
  • 蒙特·卡罗算法的Python实现

    一 背景

    此算法诞生的背景是:

    1. 曼哈顿计划,有极大的计算需求。
    2. 计算机刚开始发展,最适合做计算。

    蒙特卡洛算法理论基础是概率论,实际就是暴力计算逼近理想结果。正是在以上两个背景下,它刚好得到了极大的应用和发展。

    二 概念

    蒙特·卡罗算法,也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。

    三 实例

    上面叙述的是定义,我来描述一个例子:蒙特卡罗法计算圆周率

    1.问题描述

    • 一个圆半径R,它有一个外切正方形边长2R。
      可以知道:
    • 圆面积=Pi R^2
    • 正方形面积 2R x 2R=4R^2
    • 从这个正方形内随机抽取一个点,对这个点的要求是在正方形内任意一点的概率平均分布。
      那么这个点在圆以内的概率大概就是pi*R2/4R2=pi/4
    • 生成若干个这样的点,利用平面上两点间距离公式计算这个点到圆心的距离来判断是否在圆内。
      当我们使用足够多的点来进行统计时,我们得到的概率值十分接近pi/4
      这样就可以得到pi值

    2.代码

    import random 
    import math
    def main():
        print '请输入迭代的次数:'
        n=int(raw_input())   #n是随机的次数  
        total=0   #total是所有落入圆内的随机点
        for i in xrange(n):
            x=random.random()
            y=random.random()
            if math.sqrt(x**2+y**2)<1.0:   #判断是否落入圆内
                total+=1
        mypi=4.0*total/n   #得到Pi值
        print '迭代次数是',n,'Pi的值是:',mypi
        print '数学pi:',math.pi
        print '误差是:',abs(math.pi-mypi)/math.pi   #计算误差
        
    main()
    

    3.结果

  • 相关阅读:
    NetCore基于Consul+Ocelot+Docker+Jenkin搭建微服务架构
    Linux文档整理之【Jenkins+Docker自动化部署.Net Core】
    分布式事务
    redis
    pandas读取Excel
    centos7上用docker搭建简单的前后端分离项目
    CENTOS 设置swap 并让系统使用它
    MikroTik RouterOS安装chr授权到阿里云虚拟机(转)
    IDEA使用External Tools配置来查看javap反编译字节码
    【k8s】metrics-server
  • 原文地址:https://www.cnblogs.com/qiaogaojian/p/6218976.html
Copyright © 2011-2022 走看看