The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
public class Solution { List<List<String>> res; int A[]; public List<List<String>> solveNQueens(int n) { //经典的DFS, //解题思想:借助一个数组储存当前的状态A[i]=j表示第i行,第j列有一个皇后"Q" //函数nqueens(int cur,int n),代表cur行之前的已经满足规则,需要从cur到n进行深搜 //递归过程中,需要验证第cur行是否满足要求,满足要求的规则通过isvalid给出,必须保证前cur行的A[i]!=A[cur],并且不在一个对角线上 //即,Math.abs(A[i]-A[cur])!=cur-i //递归的终止条件是cur==n,此时需要保存中间结果 //Start: placeQueen(0,n) //if current ==n then print result //else // for each place less than n, //place queen //if current state is valid, then place next queen place Queen(cur+1,n) // end for //end else res=new ArrayList<List<String>>(); A=new int[n]; nqueens(0,n); return res; } public void nqueens(int cur,int n){ if(cur==n) printQ(n); else{ for(int i=0;i<n;i++){ A[cur]=i;//注意,不需要删除,下次重新赋值 if(isValid(cur)) nqueens(cur+1,n); } } } public void printQ(int n){ List<String> ress=new ArrayList<String>(); for(int i=0;i<n;i++){ StringBuilder seq=new StringBuilder(); for(int j=0;j<n;j++){ if(A[i]==j)seq.append("Q"); else seq.append("."); } ress.add(seq.toString()); } res.add(ress); } public boolean isValid(int cur){ for(int i=0;i<cur;i++){//注意i的范围! if(A[i]==A[cur]||Math.abs(A[i]-A[cur])==cur-i) return false; } return true; } }