Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
二叉排序树(二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。)或者是一棵空树,或者是具有下列性质的二叉树:(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。
对应leetcode中,n个数中中每个数都可以作为root,当 i 作为root时,小于 i 的点都只能放在其左子树中,大于 i 的点只能放在右子树中,此时只需求出左、右子树各有多少种,二者相乘即为以 i 作为root时BST的总数。
因为递归过程中存在大量的重复计算,从n一层层往下递归,故考虑类似于动态规划的思想,让底层的计算结果能够被重复利用,故用一个数组存储中间计算结果(即 1~n-1 对应的BST数目),这样只需双层循环即可,代码如下:
class Solution {
public:
int numTrees(int n) {
vector<int> num;
if (n<1)
return 0;
if(n==1)
return 1;
if(n==2)
return 2;
num.push_back(1);
for(int i=1;i<3;i++)
num.push_back(i);
for(int i=3;i<=n;i++)
{
num.push_back(0);
for(int j=0;j<i;j++)
num[i]+=num[j]*num[i-j-1];
}
return num[n];
}
};
II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
/ / /
3 2 1 1 3 2
/ /
2 1 2 3
/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode *> generateRes(int left,int right)
{
vector<TreeNode *> res;
if(left>right)
{
res.push_back(NULL);
return res;
}
for(int i=left;i<=right;i++)
{
vector<TreeNode *>leftpart=generateRes(left,i-1);
vector<TreeNode *>rightpart=generateRes(i+1,right);
for(int j=0;j<leftpart.size();j++)
for(int k=0;k<rightpart.size();k++)
{
TreeNode* node=new TreeNode(i);
node->left=leftpart[j];
node->right=rightpart[k];
res.push_back(node);
}
}
return res;
}
vector<TreeNode *> generateTrees(int n) {
return generateRes(1,n);
}
};