Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3二叉排序树(二叉排序树(Binary Sort Tree)又称二叉查找树(Binary Search Tree),亦称二叉搜索树。)或者是一棵空树,或者是具有下列性质的二叉树:
(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(2)若右子树不空,则右子树上所有结点的值均大于或等于它的根结点的值;
(3)左、右子树也分别为二叉排序树;
(4)没有键值相等的节点。
对应leetcode中,n个数中中每个数都可以作为root,当 i 作为root时,小于 i 的点都只能放在其左子树中,大于 i 的点只能放在右子树中,此时只需求出左、右子树各有多少种,二者相乘即为以 i 作为root时BST的总数。
因为递归过程中存在大量的重复计算,从n一层层往下递归,故考虑类似于动态规划的思想,让底层的计算结果能够被重复利用,故用一个数组存储中间计算结果(即 1~n-1 对应的BST数目),这样只需双层循环即可,代码如下:
class Solution { public: int numTrees(int n) { vector<int> num; if (n<1) return 0; if(n==1) return 1; if(n==2) return 2; num.push_back(1); for(int i=1;i<3;i++) num.push_back(i); for(int i=3;i<=n;i++) { num.push_back(0); for(int j=0;j<i;j++) num[i]+=num[j]*num[i-j-1]; } return num[n]; } };
II
Given n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1 / / / 3 2 1 1 3 2 / / 2 1 2 3
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<TreeNode *> generateRes(int left,int right) { vector<TreeNode *> res; if(left>right) { res.push_back(NULL); return res; } for(int i=left;i<=right;i++) { vector<TreeNode *>leftpart=generateRes(left,i-1); vector<TreeNode *>rightpart=generateRes(i+1,right); for(int j=0;j<leftpart.size();j++) for(int k=0;k<rightpart.size();k++) { TreeNode* node=new TreeNode(i); node->left=leftpart[j]; node->right=rightpart[k]; res.push_back(node); } } return res; } vector<TreeNode *> generateTrees(int n) { return generateRes(1,n); } };