I:
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
这里用到了回溯的方法,回溯其实就是一种深度优先搜索算法,相当于在整个解空间搜索问题的解,类似于穷举法,但是与穷举法的区别在于回溯法用到了剪枝,使得许多不是问题的解提前排出了,减少搜索的次数和时间。
class Solution { private: vector<vector<int>> res; vector<int> temp; int tempsum=0; public: void combinationSum(vector<int>& candidates, int target,vector<int>::iterator initer,int tempsum) { if(initer==candidates.end()||tempsum>target) return ; if(tempsum==target) { // temp.push_back(*initer); res.push_back(temp); return ; } for(vector<int>::iterator iter=initer;iter!=candidates.end();iter++) { temp.push_back(*iter); combinationSum(candidates,target,iter, tempsum+*iter); temp.pop_back(); } } vector<vector<int>> combinationSum(vector<int>& candidates, int target) { sort(candidates.begin(),candidates.end()); vector<int>::iterator initer=candidates.begin(); combinationSum(candidates,target,initer,0); return res; } };
II:
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
感觉自己代码写的有点复杂,不过好歹是通过了,接下来需要慢慢的把代码写简洁点,通用点。
class Solution { private: vector<vector<int>> res; vector<int> temp; public: void combinationSum(vector<int>& candidates, int target,vector<int>::iterator initer,int tempsum) { if(tempsum==target) { if(find(res.begin(),res.end(),temp)==res.end()) res.push_back(temp); return ; } if(initer==candidates.end()||tempsum>target) return ; for(vector<int>::iterator iter=initer;iter!=candidates.end();iter++) { temp.push_back(*iter); combinationSum(candidates,target,iter+1, tempsum+*iter); temp.pop_back(); } } vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { sort(candidates.begin(),candidates.end()); vector<int>::iterator initer=candidates.begin(); combinationSum(candidates,target,initer,0); return res; } };