Given a sorted array of integers, find the starting and ending position of a given target value.
Your algorithm's runtime complexity must be in the order of O(log n).
If the target is not found in the array, return [-1, -1]
.
For example,
Given [5, 7, 7, 8, 8, 10]
and target value 8,
return [3, 4]
.
网上看到的思路更好,网上说的是,先用二分法找到左端点,再用二分搜索找到右端点。问题即得到解决。
我的思路不太好,我是首先找到等于target的索引(即以前用烂了的二分查找),然后以此为中心向两边扩。
1:我的方法:
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { int len=nums.size(); int l=0,r=len-1; int mid; vector<int>res; int flag=0; while(l<=r) { mid=l+(r-l)/2; if(nums[mid]<target) l=mid+1; else if(nums[mid]>target) r=mid-1; else { flag=1; break; } } if(flag==0) { res.push_back(-1); res.push_back(-1); } else { l=mid; r=mid; while(l>=0&&nums[l]==target) { if(nums[l]==target) l--; } while(r<=len-1&&nums[r]==target) { if(nums[r]==target) r++; } res.push_back(l+1); res.push_back(r-1); } return res; } };
2:网上看到直接二分查找左右端点的方法:
class Solution { public: int begin = -1, end = -1; vector<int> searchRange(int A[], int n, int target) { vector<int>ans; find(A,0,n-1,target); ans.push_back(begin); ans.push_back(end); return ans; } void find(int A[], int l, int r, int target){ if(l > r) return ; int mid = (l+r) >> 1; if(A[mid] == target){ if(begin == -1 || begin > mid) begin = mid; end = max(mid, end); find(A,l,mid-1,target); find(A,mid+1,r,target); } else if(A[mid] < target) find(A,mid+1,r,target); else find(A,l,mid-1,target); } };
3:直接用 C++ STL 的 lower_bound
和 upper_bound
偷懒。
class Solution { public: vector<int> searchRange(int A[], int n, int target) { int* lower = lower_bound(A, A + n, target); int* upper = upper_bound(A, A + n, target); if (*lower != target) return vector<int> {-1, -1}; else return vector<int>{lower - A, upper - A - 1}; } };