zoukankan      html  css  js  c++  java
  • hdu2036

    题目

    这道题,看了很多人的博客都是用的向量的方法做的,最后发现这种方法最简单


    已知三角形三顶点坐标,求三角形面积的表达式


    解:

    无论三角形的顶点位置如何,△PMN总可以用一个直角梯形(或矩形)和两个直角三角形面积的和差来表示
    而在直角坐标系中,已知直角梯形和直角三角形的顶点的坐标,其面积是比较好求的。
    下面以一种情形来说明这个方法,其它情形方法一样,表达式也一样(表达式最好加上绝对值,确保是正值)
    如图情形(P在上方,M在左下,N在右下),过P作X轴的平行线L,作MA⊥L,NB⊥L(设P在A、B之间)
    则A、B的坐标是A(c,b),B(e,b)
    所以PA=a-c,PB=e-a,AM=b-d,BN=b-f,AB=e-c
    所以S△PMN=S梯形AMNB-S△PAM-S△PBN
    =(b-d+b-f)(e-c)/2-(b-d)(a-c)/2-(b-f)(e-a)/2

    =(ad+be+cf-af-bc-de)/2



    #include<stdio.h>
    struct node{
        int x;
        int y;
    };
    int main()
    {
        int n,i;
        node a[100];
        while(~scanf("%d",&n),n){
            for(i=0;i<n;i++) {
                scanf("%d%d",&a[i].x,&a[i].y);
            }
            double sum=0;
            for(i=1;i<n-1;i++){
                sum+=(a[0].x*a[i].y + a[0].y*a[i+1].x + a[i].x*a[i+1].y - a[0].x*a[i+1].y -a[0].y*a[i].x -a[i].y*a[i+1].x)/2.0;
            }
            printf("%.1lf
    ",sum);
        }
    
        return 0;
    }
    


  • 相关阅读:
    用户使用调查报告
    Beta总结
    Beta冲刺Day7
    Beta冲刺Day6
    Beta冲刺Day5
    Beta冲刺Day4
    Beta冲刺Day3
    Beta冲刺Day2
    Beta冲刺Day1
    Beta预备
  • 原文地址:https://www.cnblogs.com/qie-wei/p/10160288.html
Copyright © 2011-2022 走看看