zoukankan      html  css  js  c++  java
  • Divide Candies CodeForces

    Arkady and his friends love playing checkers on an n×nn×n field. The rows and the columns of the field are enumerated from 11 to nn.

    The friends have recently won a championship, so Arkady wants to please them with some candies. Remembering an old parable (but not its moral), Arkady wants to give to his friends one set of candies per each cell of the field: the set of candies for cell (i,j)(i,j) will have exactly (i2+j2)(i2+j2) candies of unique type.

    There are mm friends who deserve the present. How many of these n×nn×n sets of candies can be split equally into mm parts without cutting a candy into pieces? Note that each set has to be split independently since the types of candies in different sets are different.

    Input

    The only line contains two integers nn and mm (1n1091≤n≤109, 1m10001≤m≤1000) — the size of the field and the number of parts to split the sets into.

    Output

    Print a single integer — the number of sets that can be split equally.

    Examples

    Input
    3 3
    
    Output
    1
    
    Input
    6 5
    
    Output
    13
    
    Input
    1000000000 1
    
    Output
    1000000000000000000
    

    Note

    In the first example, only the set for cell (3,3)(3,3) can be split equally (32+32=1832+32=18, which is divisible by m=3m=3).

    In the second example, the sets for the following cells can be divided equally:

    • (1,2)(1,2) and (2,1)(2,1), since 12+22=512+22=5, which is divisible by 55;
    • (1,3)(1,3) and (3,1)(3,1);
    • (2,4)(2,4) and (4,2)(4,2);
    • (2,6)(2,6) and (6,2)(6,2);
    • (3,4)(3,4) and (4,3)(4,3);
    • (3,6)(3,6) and (6,3)(6,3);
    • (5,5)(5,5).

    In the third example, sets in all cells can be divided equally, since m=1m=1.

    题意:

    给定一个n和一个数m,求有多少对数a,b,满足一下条件:

    1<=a<=n

    1<=b<=n

    (a*a+b*b)%m==0

    思路:

    这题主要考察了取余的性质。

    我们应该知道 (a+b)%M=(a%M+b%M)%M

    (a*b)%m=((a%m)*(b%m))%m

    知道这个性质的话,我们就可以把(a*a+b*b)%m==0

    转为(a%m*a%m+b%m*b%m)%m==0

    因为a%m和b%m的范围是0~m-1,

    那么我们可以先预处理出1~n中,有多少个数对m取余的结果是i,0<=i<=m-1

    然后m*m的时间复杂度去枚举 i*i+j*j 是否是m的倍数,如果是,答案加上 i的数量乘以j的数量。

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define rt return
    #define dll(x) scanf("%I64d",&x)
    #define xll(x) printf("%I64d
    ",x)
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=1000010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    ll cnt[maxn];
    int main()
    {
        //freopen("D:\common_text\code_stream\in.txt","r",stdin);
        //freopen("D:\common_text\code_stream\out.txt","w",stdout);
    
        ll n;
        ll k;
        ll ans=0ll;
        cin>>n>>k;
        repd(i,0,k-1)
        {
            cnt[i]=n/k;
            if((n%k)>=i)
            {
                cnt[i]++;
            }
        }
        cnt[0]--;
        repd(i,0,k-1)
        {
            repd(j,0,k-1)
            {
                if((i*i+j*j)%k==0)
                {
                    ans+=cnt[i]*cnt[j];
                }
            }
        }
        cout<<ans<<endl;
    
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    模块化+定制化,PIX赋能多种行业实现低速无人车商业化
    支持Apollo、Autoware,PIX推出自动驾驶开发套件PIXKIT
    专为自动驾驶开发者打造的线控底盘——PIXLOOP
    甄别信息、病毒追踪、无人配送...这9个全球开源工具助力疫情抗击
    PIX无损线控改装——全系列车型及性能介绍
    PIX线控改装技术连载二 | 车辆组成模块之间的共同语言
    PIX入选Autodesk硅谷技术中心,以生成设计和金属增材制造落地L4自动驾驶通用底盘
    线控CRV,最高性价比的自动驾驶开发平台
    线控改装技术连载一之——线控开端和车辆组成
    CSS 创建
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/10742741.html
Copyright © 2011-2022 走看看