zoukankan      html  css  js  c++  java
  • HDU

    HDU - 6760 Math is Simple (差分,莫比乌斯函数)

    题目链接:

    http://acm.hdu.edu.cn/showproblem.php?pid=6760

    Problem Description

    Here is a simple math. You are given an integer n. Your task is to calculate the following:

    img

    思路:

    [F(n)=sum_{1le a< bleq n\gcd(a,b)=1\ a+bge n}{frac{1}{ab}} ]

    我们尝试递推求(F(n))

    思考发现,从(F(n-1))转移到(F(n))需要曾增加 (a+b=n)的方案,减去(a+b=n-1)的方案。

    即:

    [F(n)=F(n-1)+sum_{1le a< bleq n\gcd(a,b)=1\ a+b=n}{frac{1}{ab}}-sum_{1le a< bleq n-1\gcd(a,b)=1\ a+b=n-1}{frac{1}{ab}} ]

    注意:上式中(1le a< bleq n,1le a< bleq n-1)

    其实意义上严格的写法应该是(1le a< b< n),但因为(b=n)时,(mathit a)无取值,所以是等价的。

    观察到右式中只有(n,n-1)之差,所以我们可以设:

    [g(n)=sum_{1le a< bleq n\gcd(a,b)=1\ a+b=n}{frac{1}{ab}} ]

    又因为:

    [frac{1}{ab}=frac{1}{a(n-a)}=frac{1}{n}(frac{1}{a}+frac{1}{n-a})=frac{1}{n}(frac{1}{a}+frac{1}{b}) \ \ gcd(a,b)=gcd(a,a+b)=gcd(a,n) ]

    所以:

    [g(n)=sum_{1le a le n \gcd(a,n)=1}{frac{1}{a}} ]

    所以:

    [F(n)=F(n-1)+g(n)-g(n-1) \ F(n-1)=F(n-2)+g(n-1)-g(n-2) \ F(n-2)=F(n-3)+g(n-2)-g(n-3) \ dots ]

    所以:

    [F(n)=g(n)+F(2)-g(2) ]

    加入可得:

    [F(2)=frac{1}{2}\ g(2)=0 \ F(n)=frac{1}{n}*g(n)+frac{1}{2} ]

    因此问题转化为求(g(n))

    [g(n)=sum_{1le a le n \gcd(a,n)=1}{frac{1}{a}} \ =sum_{1le a le n}{frac{1}{a}[gcd(a,n)=1]} ]

    莫比乌斯函数有性质:

    [sum_{d|n}{mu(d)}=egin{cases} 1,& n=1 \ 0,& n>1 end{cases} \ So: [gcd(a,n)=1]=sum_{d|gcd(a,n)}{mu(d)} ]

    [∴ g(n)=sum_{1le a le n}frac{1}{a} {sum_{d|gcd(a,n)}{mu(d)}} ]

    我们将(g(n))改写为枚举(mathit d) 的形式,

    因为:d是n的因子,又是a的因子 。a是([1,n])中d的倍数,即: (frac{1}{a}=frac{1}{d*i})

    [∴g(n)=sum_{d|n}mu(d)sum_{i=1}^{n/d}{frac{1}{id}} ]

    将右侧的(mathit d) 提出来,

    [g(n)=sum_{d|n}{mu(d)frac{1}{d} sum_{i=1}^{n/d}{frac{1}{i}}} \ Def:S(x)=sum_{i=1}^{x}{frac{1}{x}} \∴ g(n)=sum_{d|n}{mu(d)frac{1}{d}S(n/d)} ]

    (S(x))我们可以通过(O(n))预处理出来,

    又因为内存限制,开(1e8) 大小的int数组,大概消耗$ 350Mb$,所以只能开一个(1e8)的数组,

    (mu(n))我们就只能(O(sqrt{n}+2^{pd(n)}))时间复杂度求解,

    其中(pd(n))是n的素因子种类数,在(nleq 10^8)(pd(n)leq 8)。即前8个质数相乘大于(1e8)

    因为一个数(mathit x)的某个质因子次幂大于1时,(mu(x)=0),所以我们只需要(O(sqrt n))得到(mathit n) 的所有质因子,然后(O(2^{pd(n)}))二进制枚举所有(mu(d) ot=0)(mathit d) 即可,即一个因子取或不取。

    所以本题的时间复杂度为:

    (O(10^8+T*(sqrt{n}+2^{pd(n)}))) 大概在(2e8)范围内,可以接受。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') fh = -1; c = getchar();} while (c >= '0' && c <= '9') tmp = tmp * 10 + c - 48, c = getchar(); return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 100000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    const int mod = 998244353;
    int inv[maxn];
    // inv[i]= (1/i) % mod
    int ans;
    int p[30];
    int cnt;
    int n;
    void dfs(int pos, int now, int u)
    {
    	if (pos > cnt)
    	{
    		ans = (ans + 1ll * u *  ((inv[now] - inv[now - 1] + mod) % mod) % mod * inv[n / now ] % mod) % mod;
    		return ;
    	}
    	dfs(pos + 1, now, u);
    	dfs(pos + 1, now * p[pos], mod - u);
    }
    int main()
    {
    #if DEBUG_Switch
    	freopen("C:\code\input.txt", "r", stdin);
    	freopen("C:\code\output.txt", "w", stdout);
    #endif
    	inv[1] = 1;
    	for (int i = 2; i < maxn; i++)
    		inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
    	for (int i = 2; i < maxn; i++)
    		inv[i] = ( inv[i] + inv[i - 1]) % mod;
    	int t;
    	t = readint();
    	while (t--)
    	{
    		ans = 0ll; cnt = 0;
    		n = readint();
    		if (n <= 2)
    		{
    			printf("%d
    ", (inv[2] - 1 + mod) % mod);
    			continue;
    		}
    		int temp = n;
    		for (int i = 2; i * i <= temp; ++i)
    		{
    			if (temp % i == 0)
    			{
    				p[++cnt] = i;
    				while (temp % i == 0)
    					temp /= i;
    			}
    		}
    		if (temp > 1)
    			p[++cnt] = temp;
    		dfs(1, 1, 1);
    		ans = (1ll * ans *  ((inv[n] - inv[n - 1] + mod) % mod)) % mod;
    		ans = (ans +  ((inv[2] - 1 + mod) % mod)) % mod;
    		printf("%d
    ", ans );
    	}
    	return 0;
    }
    
    
    
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    JVM全面分析之程序计时器
    JVM全面分析之类加载系统
    问题
    -----------------------算法学习篇:斐波拉契数列------------------------
    -----------------------------------A Tour of C++ Chapter8-------------------------------------------
    -----------------Clean Code《代码整洁之道》--------------------
    -----------------------------------A Tour of C++-------------------------------------------
    -----------------Clean Code《代码整洁之道》--------------------
    http响应状态码大全
    DOM之通俗易懂讲解
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/13493330.html
Copyright © 2011-2022 走看看