zoukankan      html  css  js  c++  java
  • [2016-2017 ACM-ICPC CHINA-Final]-Problem H. Great Cells(贡献,组合数学)

    [2016-2017 ACM-ICPC CHINA-Final]-Problem H. Great Cells

    题面:

    题意:

    给定(n,m,k)三个数,代表有一个(n*m)的方格,每一个方格中有一个在范围([1,k])的数,

    其中,若一个数(a_{i,j}),比其所在行和所在列中其他的都大,则成为该方格是一个great cell。

    (A_g)代表方格中一共有(mathit g)个great cell的方案数。

    现在让您编写一个程序求出:

    [sum_{g=0}^{n*m}(g+1)*A_g mod (10^9+7) ]

    思路:

    (n>m)

    [sum_{g=0}^{n*m}(g+1)*A_g mod (10^9+7) \ =sum_{g=0}^{n}(g+1)*A_g mod (10^9+7) \ =(sum_{g=0}^{n}(g)*A_g+sum_{g=0}^{n}A_g ) mod (10^9+7) \ =(sum_{g=0}^{n}(g)*A_g+k^{n*m} ) mod (10^9+7) \ =(sum_{i=1}^{n}sum_{j=1}^{m}contrib(i,j)+k^{n*m} ) mod (10^9+7) \ ]

    其中(contrib(i,j))(a_{i,j})为great cell时对答案的贡献,

    容易发现对于(iin[1,n],jin[1,m])(contrib(i,j))都是相等的。

    所以有:

    [(sum_{i=1}^{n}sum_{j=1}^{m}contrib(i,j)+k^{n*m} ) mod (10^9+7) \ =(Contrib*n*m+k^{n*m} ) mod (10^9+7) \ ]

    对于某个cell为great cell的贡献为:

    [Contrib = sum_{i=0}^{k-1} i^{(n-1+m-1)} * k^{(n-1)*(m-1)} ]

    至此,本题就已经解决了。

    时间复杂度为:(O(T imes k imes log_2(nm)))

    代码:

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <bits/stdc++.h>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define chu(x)  if(DEBUG_Switch) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) { if (a == 0ll) {return 0ll;} a %= MOD; ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    ll poww(ll a, ll b) { if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a ;} a = a * a ; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    inline long long readll() {long long tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    inline int readint() {int tmp = 0, fh = 1; char c = getchar(); while (c < '0' || c > '9') {if (c == '-') { fh = -1; } c = getchar();} while (c >= '0' && c <= '9') { tmp = tmp * 10 + c - 48, c = getchar(); } return tmp * fh;}
    void pvarr_int(int *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%d%c", arr[i], i == n ? '
    ' : ' ');}}
    void pvarr_LL(ll *arr, int n, int strat = 1) {if (strat == 0) {n--;} repd(i, strat, n) {printf("%lld%c", arr[i], i == n ? '
    ' : ' ');}}
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    #define DEBUG_Switch 0
    int n, m, k;
    const ll mod = 1e9 + 7ll;
    ll dp[202][202][2];
    int main()
    {
    #if DEBUG_Switch
        freopen("D:\code\input.txt", "r", stdin);
    #endif
        //freopen("D:\code\output.txt","w",stdout);
        int t;
        t = readint();
        for (int icase = 1; icase <= t; ++icase) {
            n = readint(); m = readint(); k = readint();
            if (n > m) {
                swap(n, m);
            }
            ll val = 0ll;
            repd(i, 0, k - 1) {
                val = (val + powmod(i, n - 1 + m - 1, mod)) % mod;
            }
            val = val * powmod(k, (n - 1) * (m - 1), mod) % mod;
            ll ans = val * n % mod * m % mod + powmod(k, n * m, mod);
            ans %= mod;
            printf("Case #%d: %lld
    ", icase, ans );
        }
    
        return 0;
    }
    
    
    
    
  • 相关阅读:
    阿里云OSS学习
    spring学习(十二)--spring中WebApplicationInitializer解析
    spring学习(十)--WebApplicationInitializer接口替代web.xml启动spring容器
    tomcat学习(二)--tomcat配置详解
    tomcat学习(一)--tomcat请求过程
    WEB工程中web.xml文件基本配置
    MAVEN学习(九)--利用nexus创建私服供上传下载jar包
    NGINX学习(九)--nginx配置示例
    Django所有ORM总结
    ORM一般操作
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/14074611.html
Copyright © 2011-2022 走看看