迪杰斯特拉算法(Dijkstra):求一点到另外一点的最短距离
两种实现方法:
邻接矩阵,时间复杂度O(n^2)
邻接表+优先队列,时间复杂度O(mlogn)(适用于稀疏图)
(n:图的节点数,m:图的边数)
leetcode经典例题:
(1)
743. 网络延迟时间
https://leetcode-cn.com/problems/network-delay-time/ 邻接矩阵,时间复杂度O(n^2)
class Solution { public: int networkDelayTime(vector<vector<int>>& times, int N, int K) { vector<int> visit(N,0); vector<vector<int>> d(N, vector<int>(N,INT_MAX)); for(auto& t:times) { d[t[0]-1][t[1]-1] = t[2]; } if(N==1) return 0; int result=-1; visit[K-1] = 1; for(int i=0;i<N-1;i++) { int k, min_v = INT_MAX; for(int j=0;j<N;j++) {; if(visit[j]==0 && d[K-1][j]<min_v) { min_v = d[K-1][j]; k = j; } } if(min_v == INT_MAX) { result = -1; break; } if(min_v >result) result = min_v; visit[k] = 1; for(int j=0;j<N;j++) { //cout<<"second j:"<<j<<endl; if(visit[j]==0 && d[k][j]!=INT_MAX) { if(d[K-1][j] > d[K-1][k]+d[k][j]) d[K-1][j] = d[K-1][k]+d[k][j]; } } } return result; } };
(2)
1514. 概率最大的路径
https://leetcode-cn.com/problems/path-with-maximum-probability/ 邻接表+优先队列,时间复杂度O(mlogn)
class Solution { public: double maxProbability(int n, vector<vector<int>>& edges, vector<double>& succProb, int start, int end) { vector<int> visit(n,0); vector<vector<pair<double, int>>> neighbor(n); for(int i=0;i<edges.size();i++) { neighbor[edges[i][0]].push_back({succProb[i], edges[i][1]}); neighbor[edges[i][1]].push_back({succProb[i], edges[i][0]}); } vector<double> d(n,0); d[start] = 1; typedef pair<double,int> P; priority_queue<P, vector<P>, less<P>> q; //最大堆,因为是要求概率值最大,如果是路径最短,应该用最小堆 q.push({1,start}); while(!q.empty()) { auto t = q.top(); q.pop(); if(visit[t.second] == 1) continue; visit[t.second] = 1; for(auto& i:neighbor[t.second]) { if(visit[i.second]==0 && d[i.second]< d[t.second]*i.first) { d[i.second] = d[t.second]*i.first; q.push({d[i.second], i.second}); } } } return d[end]; } };