You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
分析
这个题目是一个计算n层阶梯情况下,走到顶端的路径种数(要求每次只能上1层或者2层阶梯)。 这是一个动态规划的题目:
n = 1 时 ways = 1;
n = 2 时 ways = 2;
n = 3 时 ways = 3;
…
n = k 时 ways = ways[k-1] + ways[k-2];
明显的,这是著名的斐波那契数列问题。有递归和非递归两种方式求解
Solving this problem by recursion ,we will do a lot of same recursion. Example: F(10)=F(9)+F(8); F(9)=F(8)+F(7); we calculate F(8) twice,when n is large,this will increase as a rate of n's exponent.
So a more efficient way to solve this problem is from Bottom to Top. Calculate F(0) ,F(1); then F(2).........
(n >= 3)时,只要保存dp[n-1]和dp[n-2]就够了,没必要保存前面的值
1 class Solution { 2 public: 3 int climbStairs(int n) { 4 int dp[3],temp; 5 dp[0] = 0; 6 dp[1] = 1; 7 dp[2] = 2; 8 if(n <= 2) 9 return dp[n]; 10 for(int i = 3; i <= n; i++){ 11 temp = dp[1] + dp[2]; 12 dp[1] = dp[2]; 13 dp[2] = temp; 14 } 15 return dp[2]; 16 } 17 };