Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected.
You only need to output the answer module a given number P.
Input
The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.
Output
For each test case, output one line containing the answer.
Sample Input
5
1 30000
2 30000
3 30000
4 30000
5 30000
Sample Output
1
3
11
70
629
(优化过程:因为n很大,直接循环会超时,根据公式,我们可以转化为求1···n,这n个数中有多少个不同的gcd,以及每个gcd的个数。也就是求每个gcd的欧拉函数。)
(Polya定理的裸题,只是加了欧拉函数的优化。)
#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
int euler(int x)
{
int a=x,res=x;
for(int i=2;i*i<=a;i++)
{
if(a%i==0)
{
res=res/i*(i-1);
while(a%i==0)
a/=i;
}
}
if(a>1)
res=res/a*(a-1);
return res;
}
LL qsm(LL a,LL k,LL mod)
{
LL ans=1;
while(k)
{
if(k&1) ans=(ans*a)%mod;
a=(a*a)%mod;
k>>=1;
}
return ans;
}
int main(void)
{
int t;
scanf("%d",&t);
while(t--)
{
int n,p,ans=0;
scanf("%d%d",&n,&p);
for(int i=1;i*i<=n;i++)
{
if(n%i==0)
{
//cout<<i<<" "<<euler(i)<<endl;
if(i*i==n) ans=(ans+euler(i)*qsm(n,i-1,p)%p)%p;
else ans=(ans+euler(i)*qsm(n,n/i-1,p)%p+euler(n/i)*qsm(n,i-1,p)%p)%p;
}
}
printf("%d
",ans);
}
return 0;
}