zoukankan      html  css  js  c++  java
  • POJ

    Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of the necklace can be produced. You should know that the necklace might not use up all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected.

    You only need to output the answer module a given number P.
    Input
    The first line of the input is an integer X (X <= 3500) representing the number of test cases. The following X lines each contains two numbers N and P (1 <= N <= 1000000000, 1 <= P <= 30000), representing a test case.
    Output
    For each test case, output one line containing the answer.
    Sample Input

    5
    1 30000
    2 30000
    3 30000
    4 30000
    5 30000
    

    Sample Output

    1
    3
    11
    70
    629
    


    (优化过程:因为n很大,直接循环会超时,根据公式,我们可以转化为求1···n,这n个数中有多少个不同的gcd,以及每个gcd的个数。也就是求每个gcd的欧拉函数。)
    (Polya定理的裸题,只是加了欧拉函数的优化。)

    #include <cstdio>
    #include <iostream>
    #define LL long long
    using namespace std;
    int euler(int x)
    {
    	int a=x,res=x;
    	for(int i=2;i*i<=a;i++)
    	{
    		if(a%i==0)
    		{
    	        res=res/i*(i-1);
    			while(a%i==0)
    				a/=i;							
    		} 
    	}
    	if(a>1)
    	  res=res/a*(a-1);
    	return res;
    }
    LL qsm(LL a,LL k,LL mod)
    {
    	LL ans=1;
    	while(k)
    	{
    		if(k&1) ans=(ans*a)%mod;
    		a=(a*a)%mod;
    		k>>=1;	
    	}
    	return ans;
    }
    int main(void)
    {
    	int t;
    	scanf("%d",&t);
    	while(t--)
    	{
    		int n,p,ans=0;
    		scanf("%d%d",&n,&p);
    		for(int i=1;i*i<=n;i++)
    		{
    			if(n%i==0)
    			{
    				//cout<<i<<" "<<euler(i)<<endl;
    				if(i*i==n)  ans=(ans+euler(i)*qsm(n,i-1,p)%p)%p;
    				else ans=(ans+euler(i)*qsm(n,n/i-1,p)%p+euler(n/i)*qsm(n,i-1,p)%p)%p;					
    			}
    
    		}
    		 printf("%d
    ",ans);
    			
    	}
    	
    	
    	
    	return 0;
    }
     
    
  • 相关阅读:
    用spring boot 来创建第一个application
    Entily实体类
    ORM
    lambda expression
    Domain logic approochs
    mysql的数据类型(Data type)
    Backup &recovery备份和还原
    spring AOP Capability and goals
    CDI Features
    Tomcat的配置与安装
  • 原文地址:https://www.cnblogs.com/qinjames/p/10554681.html
Copyright © 2011-2022 走看看