zoukankan      html  css  js  c++  java
  • 1024 Palindromic Number (25分)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤) is the initial numer and K (≤) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    
     

    Sample Output 1:

    484
    2
    
     

    Sample Input 2:

    69 3
    
     

    Sample Output 2:

    1353
    3


    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    
    bool ishuiwen(string s)//判别是否回文
    {
        int num = s.size();
        for(int i=0;i<num;i++)
        {
            if(s[i]!=s[num-i-1])
                return 0;
        }
    
        return 1;
    }
    
    string adder(string t)//你序后再相加
    {
        string tm = t;//copy t
        reverse(t.begin(),t.end());//逆转t
        int sizee = t.size();
        int carry = 0;
        for(int i=sizee-1;i>=0;i--)
        {
            int num = tm[i]-'0';
            num = t[i]-'0' + num +carry;
            carry = 0;
            if(num>=10)
            {
                carry = 1;
                num = num -10;
            }
            tm[i] = num +'0';
        }
        if(carry==1)
            tm = '1'+tm;
    
    
        return tm;
    
    }
    int main()
    {
        string n;
        int k;
        cin>>n>>k;
         if(ishuiwen(n))//判断一输入的数字是否本身就是回文数
            {
                cout<<n<<endl;
                printf("%d",0);
             return 0;
            }
        for(int i=0;i<k;i++)
        {
            
    
            n = adder(n);
    
            if(ishuiwen(n))
            {
                cout<<n<<endl;
                printf("%d",i+1);
                return 0;
            }
    
        }
    
    
                cout<<n<<endl;
                printf("%d",k);
    
    
        return 0;
    
    }
  • 相关阅读:
    软件构造 第七章第三节 断言和防御性编程
    软件构造 第七章第二节 错误与异常处理
    软件构造 第七章第一节 健壮性和正确性的区别
    软件构造 第六章第三节 面向可维护的构造技术
    软件构造 第六章第二节 可维护的设计模式
    欧拉函数代码实现及扩展--快速矩阵幂
    编译原理
    算法设计与分析总结
    人工智能简答总结
    感想
  • 原文地址:https://www.cnblogs.com/qinmin/p/12885713.html
Copyright © 2011-2022 走看看