线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L。
数据结构:
struct Node { int left,right; //区间左右值 Node *leftchild; Node *rightchild; };
线段树的建立:
Node *build(int l , int r ) //建立二叉树 { Node *root = new Node; root->left = l; root->right = r; //设置结点区间 root->leftchild = NULL; root->rightchild = NULL; if ( l +1< r ) //L>1的情况,即不是叶子结点 { int mid = (r+l) >>1; root->leftchild = build ( l , mid ) ; root->rightchild = build ( mid , r) ; } return root; }
插入一条线段[c,d]:
增加一个cover的域来计算一条线段被覆盖的次数,在建立二叉树的时候应顺便把cover置0。
void Insert(int c, int d , Node *root ) { if(c<= root->left&&d>= root->right) root-> cover++; else { //比较下界与左子树的上界 if(c < (root->left+ root->right)/2 ) Insert (c,d, root->leftchild ); //比较上界与右子树的下界 if(d > (root->left+ root->right)/2 ) Insert (c,d, root->rightchild ); //注意,如果一个区间横跨左右儿子,那么不用担心,必定会匹配左儿子、右儿子中各一个节点 } }
删除一条线段[c,d]:
void Delete (int c , int d , Node *root ) { if(c<= root->left&&d>= root->right) root-> cover= root-> cover-1; else { if(c < (root->left+ root->right)/2 ) Delete ( c,d, root->leftchild ); if(d > (root->left+ root->right)/2 ) Delete ( c,d, root->rightchild ); } }
QUESTION:
Given a huge N*N matrix, we need to query the GCD(greatest common divisor最大公约数) of numbers in any given submatrix range(x1,y1,x2,y2). Design a way to preprocess the matrix to accelerate the query speed. extra space should be less than O(N^2) and the preprocess time complexity should be as litte as possible.
SOLUTION:
For each row A[i] in the matrix A, we build a segment tree.The tree allows us to query GCD(A[i][a..b]) 第i行第a到b列(不包括b)的最大公约数in O(log n) time . The memory complexity of each segment tree is O(n), which gives us O(n^2) total memory complexity.
时间复杂度,O(n2)建立线段树, O(r * log(c)) 查找,其中r and c are the number of rows and columns in the query.
GCD的实现:被除数与余数对于除数同余,所以被除数与除数的GCD就是余数与除数的GCD,所以用递归或循环求解。
int a = 45, b = 35,tmp; while(b!=0){ a = a%b; tmp = a; a = b; b = tmp; } cout << a << endl;