zoukankan      html  css  js  c++  java
  • 线段树(segment tree)

    线段树是一棵二叉树,记为T(a, b),参数a,b表示区间[a,b],其中b-a称为区间的长度,记为L。

    数据结构:
    struct Node
    {
        int   left,right;  //区间左右值
        Node   *leftchild;
        Node   *rightchild;    
    };
    线段树的建立:
    Node   *build(int   l ,  int r ) //建立二叉树
    {
        Node   *root = new Node;
        root->left = l;
        root->right = r;     //设置结点区间
        root->leftchild = NULL;
        root->rightchild = NULL;
    
        if ( l +1< r ) //L>1的情况,即不是叶子结点
        {
           int  mid = (r+l) >>1;
           root->leftchild = build ( l , mid ) ;
           root->rightchild = build ( mid  , r) ; 
        } 
        return    root; 
    }
    插入一条线段[c,d]:
    增加一个cover的域来计算一条线段被覆盖的次数,在建立二叉树的时候应顺便把cover置0。
    void  Insert(int  c, int d , Node  *root )
    {
           if(c<= root->left&&d>= root->right) 
               root-> cover++;
           else 
           {
               //比较下界与左子树的上界
               if(c < (root->left+ root->right)/2 ) Insert (c,d, root->leftchild  ); 
               //比较上界与右子树的下界
               if(d > (root->left+ root->right)/2 ) Insert (c,d, root->rightchild  );
    //注意,如果一个区间横跨左右儿子,那么不用担心,必定会匹配左儿子、右儿子中各一个节点
           }
    }

    删除一条线段[c,d]:

    void  Delete (int c , int  d , Node  *root )
    {
           if(c<= root->left&&d>= root->right) 
               root-> cover= root-> cover-1;
           else 
           {
              if(c < (root->left+ root->right)/2 ) Delete ( c,d, root->leftchild  );
              if(d > (root->left+ root->right)/2 ) Delete ( c,d, root->rightchild );
           }
    }
    QUESTION:
    Given a huge N*N matrix, we need to query the GCD(greatest common divisor最大公约数) of numbers in any given submatrix range(x1,y1,x2,y2). Design a way to preprocess the matrix to accelerate the query speed. extra space should be less than O(N^2) and the preprocess time complexity should be as litte as possible.
    SOLUTION:
    For each row A[i] in the matrix A, we build a segment tree.The tree allows us to query GCD(A[i][a..b]) 第i行第a到b列(不包括b)的最大公约数in O(log n) time . The memory complexity of each segment tree is O(n), which gives us O(n^2) total memory complexity. 
    时间复杂度,O(n2)建立线段树, O(r * log(c)) 查找,其中r and c are the number of rows and columns in the query.
    GCD的实现:被除数与余数对于除数同余,所以被除数与除数的GCD就是余数与除数的GCD,所以用递归或循环求解。
    int a = 45, b = 35,tmp;
    while(b!=0){
    a = a%b;
    tmp = a;
    a = b;
    b = tmp;
    }
    cout << a << endl;
  • 相关阅读:
    利用 socket 发送 get/post 请求
    图解SQL的Join
    6大主流开源SQL引擎总结,遥遥领先的是谁?
    JavaScript工具库之Lodash
    Node.js面试题之2017
    实用的 JavaScript 调试小技巧
    5 个技巧避免不必要的浏览器兼容性问题
    在 Node.js 中引入模块:你所需要知道的一切都在这里
    一行神奇的 javascript 代码
    webGL动画
  • 原文地址:https://www.cnblogs.com/qionglouyuyu/p/4850774.html
Copyright © 2011-2022 走看看