作者:李道兵
链接:https://www.zhihu.com/question/27590048/answer/37432988
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
链接:https://www.zhihu.com/question/27590048/answer/37432988
来源:知乎
著作权归作者所有,转载请联系作者获得授权。
1. 首先要解决掉数据库的压力,3万qps对应的磁盘 iops 很大,不过现在好的 SSD 能提供很好的 iops, 比如这款: ARK | Intel® SSD DC P3700 Series (800GB, 2.5in PCIe 3.0, 20nm, MLC) 单盘 90000 IOPS,应该能撑住你的数据库,考虑到主备,以及你的sharding需求,3-9 台数据库机器,高内存,高CPU,SSD磁盘应该能抗住
2. 业务逻辑这一层: Java 系,用线程来抗并发的,如果业务逻辑不太复杂,那么基本能做到 100ms 内响应,那么 30000qps, 对应的是 3000并发线程,这部分设计的时候记得保持无状态,单台支撑 300-1000 并发没问题,加上一倍的冗余,那么 6~20 台业务型机器可以抗住。
3. 缓存层: 支付订单一般对缓存需求不高,但缓存层一般都会有,避免把查询压力压到数据库,简单两台缓存,或者缓存平行部署在业务型机器上都可以解决,具体看你的情况了。
4. 接入层: nginx 做LVS就可以了,记得 backlog 配大点就可以了, 3万qps, 假设单个请求的数据在 10KB 左右,那么是 300MB/s,如果是千兆机,每台4网卡,两内两外,加上冗余,我会部署4台入口机,如果是万兆机,两台做主备(心跳或者LVS)即可。
当然,魔鬼在细节,做好机器的监控,慢请求的监控,日志的汇聚与分析。然后逐步推进服务的 SOA 化来降低复杂度。留一台业务机打小流量来做线上测试。优化JVM运行参数,等等,要做的事情还很多。
2. 业务逻辑这一层: Java 系,用线程来抗并发的,如果业务逻辑不太复杂,那么基本能做到 100ms 内响应,那么 30000qps, 对应的是 3000并发线程,这部分设计的时候记得保持无状态,单台支撑 300-1000 并发没问题,加上一倍的冗余,那么 6~20 台业务型机器可以抗住。
3. 缓存层: 支付订单一般对缓存需求不高,但缓存层一般都会有,避免把查询压力压到数据库,简单两台缓存,或者缓存平行部署在业务型机器上都可以解决,具体看你的情况了。
4. 接入层: nginx 做LVS就可以了,记得 backlog 配大点就可以了, 3万qps, 假设单个请求的数据在 10KB 左右,那么是 300MB/s,如果是千兆机,每台4网卡,两内两外,加上冗余,我会部署4台入口机,如果是万兆机,两台做主备(心跳或者LVS)即可。
当然,魔鬼在细节,做好机器的监控,慢请求的监控,日志的汇聚与分析。然后逐步推进服务的 SOA 化来降低复杂度。留一台业务机打小流量来做线上测试。优化JVM运行参数,等等,要做的事情还很多。