zoukankan      html  css  js  c++  java
  • 数据挖掘实践(31):算法基础(八)XGBoost(极端梯度提升)算法

    0 简介

    0.1 主题

    0.2 目标

    1 XGBoost的原理考虑使用二阶导信息

    1.1 XGBoost简介

     

    1.2 GDBT损失函数展开

    1.3 代码演示

    # /usr/bin/python
    # -*- encoding:utf-8 -*-
    
    import xgboost as xgb
    import numpy as np
    from sklearn.model_selection import train_test_split   # cross_validation
    
    
    def iris_type(s):
        it = {b'Iris-setosa': 0,
              b'Iris-versicolor': 1,
              b'Iris-virginica': 2}
        return it[s]
    
    
    if __name__ == "__main__":
        path = './data/iris.data'  # 数据文件路径
        data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})
        x, y = np.split(data, (4,), axis=1)
        
        x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, test_size=50)
        
        data_train = xgb.DMatrix(x_train, label=y_train)
        
        data_test = xgb.DMatrix(x_test, label=y_test)
        
        watch_list = [(data_test, 'eval'), (data_train, 'train')]
        
        param = {'max_depth': 4, 'eta': 0.1,  'objective': 'multi:softmax', 'num_class': 3}
                                                                                     
        bst = xgb.train(param, data_train, num_boost_round=4, evals=watch_list)
        y_hat = bst.predict(data_test)
        result = y_test.reshape(1, -1) == y_hat 
        print('正确率:	', float(np.sum(result)) / len(y_hat))
        print('END.....
    ')
    [0]	eval-merror:0.02	train-merror:0.02
    [1]	eval-merror:0.02	train-merror:0.02
    [2]	eval-merror:0.02	train-merror:0.02
    [3]	eval-merror:0.02	train-merror:0.02
    正确率:	 0.98
    END.....

    2 决策树的描述

    2.1 描述

     

     2.2 代码

    # /usr/bin/python
    # -*- encoding:utf-8 -*-
    
    import xgboost as xgb
    import numpy as np
    from sklearn.model_selection import train_test_split   # cross_validation
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    import warnings
    warnings.filterwarnings("ignore")
    
    def show_accuracy(a, b, tip):
        acc = a.ravel() == b.ravel()
        print(acc)
        print("----------------------")
        print(tip + '正确率:	', float(acc.sum()) / a.size)
    
    
    if __name__ == "__main__":
        data = np.loadtxt('./data/wine.data', dtype=float, delimiter=',')
        
        y, x = np.split(data, (1,), axis=1) 
    
        x = StandardScaler().fit_transform(x)
        x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, test_size=0.5)
    
        # Logistic回归
        lr = LogisticRegression(penalty='l2') # LR正则
        lr.fit(x_train, y_train.ravel())
        y_hat = lr.predict(x_test)
        show_accuracy(y_hat, y_test, 'Logistic回归 ')
    
        # XGBoost
        y_train[y_train == 3] = 0 # 第3个类别标记为0
        y_test[y_test == 3] = 0
        data_train = xgb.DMatrix(x_train, label=y_train)
        data_test = xgb.DMatrix(x_test, label=y_test)
        watch_list = [(data_test, 'eval'), (data_train, 'train')]
                                                                 
        param = {'max_depth': 3, 'eta': 1, 'objective': 'multi:softmax', 'num_class': 3}
        
        bst = xgb.train(param, data_train, num_boost_round=4, evals=watch_list)
        y_hat = bst.predict(data_test)
        show_accuracy(y_hat, y_test, 'XGBoost ')
    [ True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True False  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True]
    ----------------------
    Logistic回归 正确率:	 0.9887640449438202
    [0]	eval-merror:0.011236	train-merror:0
    [1]	eval-merror:0	train-merror:0
    [2]	eval-merror:0.011236	train-merror:0
    [3]	eval-merror:0.011236	train-merror:0
    [ True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True False
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True  True  True  True  True  True  True  True
      True  True  True  True  True]
    ----------------------
    XGBoost 正确率:	 0.9887640449438202

    3 正则项的定义

    4 目标函数计算

    4.1 目标函数计算

    4.2 持续化简

     

     

     代码实战

    # /usr/bin/python
    # -*- coding:utf-8 -*-
    import warnings
    warnings.filterwarnings("ignore")
    
    import xgboost as xgb
    import numpy as np
    import scipy.sparse
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    
    
    def read_data(path):
        y = [] 
        row = [] 
        col = [] 
        values = [] 
        r = 0      
        for d in open(path):
            d = d.strip().split() 
            y.append(int(d[0])) 
            d = d[1:]
            for c in d: 
                key, value = c.split(':') 
                row.append(r) 
                col.append(int(key)) 
                values.append(float(value))
            r += 1 
             
        x = scipy.sparse.csr_matrix((values, (row, col))).toarray()
        y = np.array(y) 
        return x, y  
    
    
    def show_accuracy(a, b, tip):
        acc = a.ravel() == b.ravel()
        print(acc)
        print(tip + '正确率:	', float(acc.sum()) / a.size)
    
    
    if __name__ == '__main__':
        x, y = read_data('./data/agaricus_train.txt')
        x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)
    
        # Logistic回归
        lr = LogisticRegression(penalty='l2')
        lr.fit(x_train, y_train.ravel())
        y_hat = lr.predict(x_test)
        show_accuracy(y_hat, y_test, 'Logistic回归 ')
    
        # XGBoost
        y_train[y_train == 3] = 0
        y_test[y_test == 3] = 0
        data_train = xgb.DMatrix(x_train, label=y_train)
        data_test = xgb.DMatrix(x_test, label=y_test)
        watch_list = [(data_test, 'eval'), (data_train, 'train')]
        param = {'max_depth': 3, 'eta': 1, 'silent': 0, 'objective': 'multi:softmax', 'num_class': 3}
        bst = xgb.train(param, data_train, num_boost_round=4, evals=watch_list)
        y_hat = bst.predict(data_test)
        show_accuracy(y_hat, y_test, 'XGBoost ')
    [ True  True  True ...  True  True  True]
    Logistic回归 正确率:	 1.0
    [0]	eval-merror:0.035687	train-merror:0.040696
    [1]	eval-merror:0.007291	train-merror:0.009982
    [2]	eval-merror:0.000767	train-merror:0.000512
    [3]	eval-merror:0.000767	train-merror:0.000512
    [ True  True  True ...  True  True  True]
    XGBoost 正确率:	 0.9992325402916347

    5 拓展

    6 总结

    6.1 为什么xgboost要用泰勒展开,优势在哪里/

     6.2 XGBoost和GBDT的区别

    7 笔面试相关

    7.1 XGBoost如何寻找最优特征?是又放回还是无放回的呢?

    7.2  XGBoost为什么快?

    7.3 XGBoost如何处理不平衡数据

  • 相关阅读:
    jQuery的父,子,兄弟节点查找方法
    我们的产品最终入驻淘宝服务市场
    iframe显示滚动栏
    自己定义控件三部曲之动画篇(十三)——实现ListView Item进入动画
    [叁]Pomelo游戏server编程分享 之 server结构与配置分析
    数列求和
    字节与字符_字节流与字符流_ASCII与Unicode_GB2312_GBK_GB18030_BIG-5
    Codeforces Round #257(Div. 2) B. Jzzhu and Sequences(矩阵高速幂)
    呼叫保持流程
    PDF转EPUB格式电子书经验总结
  • 原文地址:https://www.cnblogs.com/qiu-hua/p/14400351.html
Copyright © 2011-2022 走看看